EJOI syllabus — version 2025

European Junior Olympiad in Informatics Syllabus

The purpose of this document is to serve as a set of guidelines to help decide whether a
task is appropriate for the European Junior Olympiad in Informatics (EJOI). However, it cannot
serve as a strict limitation regarding topics not explicitly or implicitly mentioned. Based on
this document, the International Scientific Committee (ISC) evaluates the task proposals when
selecting the competition tasks. Consequently, another purpose of the Syllabus is to help the
organizers of junior national olympiads prepare their students for the EJOL.

The Syllabus presented below has been compiled using the International Olympiad in In-
formatics (IOI) Syllabus. The topics excluded from the IOI Syllabus are noted with *.

1. Mathematics
1.1. Arithmetics

Integers, operations (including exponentiation), comparison
Fractions, percentages

Basic properties of integers (sign, parity, divisibility)

Prime numbers

GCD and LCM, basic properties of GCD

Basic modular arithmetic: addition, subtraction, multiplication
Representations of integers in different bases

Additional topics from number theory

Advanced modular arithmetic: division and inverse elements

Complex analysis for increasing precision of floating-point computations
Complex numbers

XXXX 38888088

1.2.

P!
o
=)
=
o
-
H
<

Line, line segment, angle, triangle, rectangle, square, circle
Point, vector, coordinates in the plane

Polygon (vertex, side/edge, simple, convex, inside, area)
Euclidean distance

Pythagorean theorem

Convex hull*

Geometry in three or more dimensions

General conics (parabolas, hyperbolas, ellipses)
Trigonometric functions

XXXX 38883

1.3. Discrete Structures (DS)
DS1. Sets, relations, and functions

This subsection includes fundamental knowledge needed for thinking of and/or proving
solutions of the competition tasks, but if a specific concept is included in the statement, it will
have a sufficient definition.

Sets (inclusion/exclusion, complements, Cartesian products, power sets)

Page 1 of 7



EJOI syllabus — version 2025

X

Relations (reflexivity, symmetry, transitivity, equivalence relations, total/linear order
relations, lexicographic order)
Functions (surjections, injections, inverses, composition)

Cardinality and countability (of infinite sets)

DS2. Basic logic

XXX 38889

First-order logic

Logical connectives (including their basic properties)
Truth tables

Universal and existential quantification

Using and applying basic rules for implication

Normal forms
Validity
Limitations of predicate logic

DS3. Proof techniques

Notions of implication, converse, inverse, contrapositive, negation, and contradiction
Direct proofs, proofs by: counterexample, contraposition, contradiction
Mathematical induction, strong induction (also known as complete induction)
Recursive mathematical definitions (including mutually recursive definitions)

DS4. Basics of counting

(< <

XX 88083

Counting arguments (sum and product rule, arithmetic and geometric progressions,
Fibonacci numbers)

Permutations, variations, and combinations with or without repetition (definitions and
basic applications)

Factorial function, binomial coefficients

Inclusion-exclusion principle

Pigeonhole principle

Pascal’s identity, Binomial theorem

Solving of recurrence relations
Burnside lemma

DSS. Graphs and trees

S8883d

(L] J)

Undirected graphs (vertex/node, edge, degree, adjacency)

Directed graphs (in-degree, out-degree) and directed acyclic graphs (DAG)
Multigraphs, graphs with self-loops

Bipartite graphs

‘Decorated’ graphs with edge/node labels, weights, colors

Paths in graphs (undirected and directed path, cycle, Euler trail/cycle, Hamilton
path/cycle)

Reachability (connected component, shortest distance)

Trees (leaf, diameter, forest)

Rooted trees (root, parent, child, ancestor, subtree, binary tree)

Page 2 of 7



EJOI syllabus — version 2025

Spanning trees (and general subgraph)
Traversal strategies
Basic combinatorial properties of graphs!

X More general connectivity (biconnectivity and strongly connected components in di-
rected graphs)*

X Planar graphs

X Hypergraphs

X Specific graph classes such as perfect graphs

Some concepts in this subsection don’t have universally recognized definitions. Therefore
if some of the concepts of multigraphs, paths, and cycles are included in the task statement, they
will have a sufficient definition.

DS6. Discrete probability — X
1.4. Other Areas

Basics of combinatorial game theory, winning and losing positions
Matrices (definition)
Basic statistics such as arithmetic mean, median

> Additional topics from combinatorial game theory (such as Nim game and Sprague-
Grundy theorem)
X Linear algebra, including (but not limited to):

e Matrix multiplication/exponentiation/inversion, and Gaussian elimination
e Polynomial interpolation
e Fast Fourier transform

X Calculus
>{ Additional topics from statistics

2. Computer Science
2.1. Programming Fundamentals (PF)
PF1. Basic programming constructs

Basic syntax and semantics of C++
Variables, types, expressions, and assignment
Simple I/0

Conditional and iterative control structures
Functions and parameter passing

Recursion

Bitwise operations

Structured decomposition

8888880

'This item includes various relationships between the numbers of vertices, edges, and connected components
in graphs, as well as vertex degrees and other similar properties. One example is the Handshaking lemma.

Page 3 of 7



EJOI syllabus — version 2025

w
e
N

XXX 3888880808089

. Fundamental data structures

Primitive types (boolean, signed/unsigned integer, character)

Arrays

Strings and string processing

Static and stack allocation (elementary automatic memory management)

Linked structures

Implementation strategies for graphs and trees

Elementary use of real numbers in numerically stable tasks

The floating-point representation of real numbers, the existence of precision issues?
Pointers and references

Data representation in memory

Heap allocation
Runtime storage management
Non-trivial calculations on floating-point numbers, manipulating precision errors

PF3. Reading from and writing to text files

Some competition tasks may be of type output-only, so contestants may be expected to
make their programs read data from and write data to text files according to a prescribed simple

format.

PF4. Event-driven programming

Some competition tasks may involve a dialog with a reactive environment. This will in-
clude implementing such an interaction with the provided environment.

2.2. Algorithms and Complexity (AL)
ALI1. Algorithmic analysis

888y

88083

XX

Algorithm specification, precondition, postcondition, correctness, invariants
Asymptotic analysis of upper complexity bounds

Amortized analysis

Big O notation

Standard complexity classes: constant, logarithmic, linear, O(n logn), quadratic, cu-
bic, exponential, etc.

Time and space trade-offs in algorithms

Empirical performance measurements

Identifying differences among best, average, and worst-case behaviors

Tuning parameters to reduce running time, memory consumption, or other measures
of performance

Asymptotic analysis of average complexity bounds
Using recurrence relations to analyze recursive algorithms (except the simple recurrent
relation used to analyze merge sort)

ZWhenever possible, avoiding floating-point calculations completely is the preferred solution, but extensive use
of fractions to perform exact calculations is not expected.

Page 4 of 7



EJOI syllabus — version 2025

AL2. Algorithmic strategies

88880

XAXXXXXXX

Simple loop design strategies

Brute-force algorithms (exhaustive search)

Greedy algorithms

Divide-and-conquer

Backtracking (recursive and non-recursive), Branch-and-bound
Dynamic programming, including (but not limited to):

e basic and classical DP
e DP with bitmasks

e digit DP

e DPon tree and DAG

Meet in the middle

Square root decomposition (including Mo’s trick)

Heuristics

Discrete approximation algorithms

Randomized algorithms

Finding good features for machine learning tasks

Clustering algorithms (e.g. k-means, k-nearest neighbor)
Minimizing multi-variate functions using numerical approaches

AL3a. Basic algorithms

Simple algorithms involving integers: radix conversion, Euclid’s algorithm, primality
test by O(4/n) trial division, Sieve of Eratosthenes, factorization (by trial division or
a sieve), fast exponentiation

Simple operations on arbitrary precision integers (addition, subtraction, multiplica-
tion)

Simple array manipulation (filling, shifting, rotating, reversal, resizing, minimum/ma-
ximum, prefix sums, histogram, count sort)

Sliding window and two pointers

Simple string algorithms (e.g. naive substring search)

Sequential processing/search and binary search (also binary search the answer)

AL3b. Advanced algorithms

XXXXXXXX 88808

Bucket sort and radix sort

Quicksort and Quickselect to find the k-th smallest element
O(nlogn) worst-case sorting algorithms (heap sort, merge sort)
Traversals of ordered trees (pre-, in-, and post-order)

Binary lifting

Ternary search

Minimax heuristic for games*, Alpha-beta pruning

Extended Euclid’s algorithm

Parsing arithmetic expressions (for example, by using shunting yard algorithm)
2-SAT

Hashing

Advanced string algorithms such as Rabin-Karp, KMP, Z-algorithm, Aho-Corasick
Complex dynamic programming optimizations such as divide and conquer, convex
hull trick*

Page 5 of 7



EJOI syllabus — version 2025

AL3c. Graph algorithms

(< ]<

XXXXX 8883

Depth- and breadth-first traversals

Applications of the depth-first search, such as topological ordering and Euler trail/cy-
cle?

Finding connected components and transitive closures

Shortest-path algorithms (Dijkstra, Bellman-Ford, Floyd-Warshall)

Minimum spanning tree (Jarnik-Prim and Kruskal algorithms)

Graph extension®

Lexicographical BFS, maximum adjacency search and their properties
Biconnectivity in undirected graphs (bridges, articulation points)*
Connectivity in directed graphs (strongly connected components)*
Maximum bipartite matching*

Maximum flow. Flow/cut duality theorem*

AL3d. Geometric algorithms

In general, the ISC has a strong preference for tasks that can be solved using integer arith-
metics to avoid precision issues. This may include representing some computed values as exact
fractions, but the extensive use of such fractions in calculations is discouraged.

Additionally, if a task uses two-dimensional objects, the ISC prefers tasks in which such
objects are rectilinear.

v

X

XXXXXXXXX

Representing points, vectors, lines, line segments
Coordinate compression
Sweeping line method

Checking for collinear points, parallel/orthogonal vectors, and clockwise turns (for
example, by using determinant evaluation or the cross and dot products of two-
dimensional vectors)*

Computing the area of a polygon from the coordinates of its vertices*

Intersection of two lines*

Checking whether a general polygon contains a point™®

Point-line duality

Halfspace intersection, Voronoi diagrams, Delaunay triangulations

Computing coordinates of circle intersections against lines and circles

Linear programming in three or more dimensions and its geometric interpretations
Center of mass of a two-dimensional object

Computing and representing the composition of geometric transformations if the
knowledge of linear algebra gives an advantage

3Note that the Euler tour technique is explicitly excluded in AL4. Here, we are referring only to the classical
algorithms for finding paths and cycles that use each edge exactly once.

A technique that modifies the graph and adds additional information to each vertex, thereby ‘extending’ the
initial information for every vertex. For example, if we have a graph that is a road network and every road has a
travel time, we can add the current time information to each vertex and view the vertices as pairs — (initial number,
current time).

Page 6 of 7



EJOI syllabus — version 2025

2.3.

AL4. Data structures

L] J<

L] JJ

83

XXX XXXX XXXXXXX

Stacks, queues, and double-ended queues

Binary heap data structures

Knowing and using STL data structures: pair, vector, stack, queue, deque, priority
queue, (multi)set, (multi)map, and unordered structures

Representations of graphs (adjacency lists, adjacency matrix, edge list)
Representation of disjoint sets: the Union-Find data structure

Statically balanced binary search trees. Instances of this include binary indexed trees
(also known as Fenwick trees) and segment trees (also known as interval trees and
tournament trees).

Sparse table for LCA, RMQ queries

Nesting of data structures, such as having a sequence of sets

Lazy propagation technique for segment trees

Merge-sort tree

Persistent data structures™

Balanced binary search trees™

Augmented binary search trees*

Cartesian tree

Two-dimensional tree-like data structures (such as a 2D statically balanced binary tree
or a treap of treaps) used for 2D queries

Complex heap variants such as binomial and Fibonacci heaps

Trie*

String data structures such as suffix array/tree/automata

Decomposition of static trees (heavy-light decomposition, separator structures such
as centroid decomposition)*

Euler tour technique

Data structures for dynamically changing trees and their use in graph algorithms
Using and implementing hash tables (including strategies to resolve collisions) but
one is expected to know and use the STL unordered data structures

ALS. Distributed algorithms — X

ALG6. Cryptographic algorithms — X

AL7. Parallel algorithms — X

Other Areas
e Basic computability — X

e The complexity classes of P and NP — X
e Automata and grammars — X

Page 7 of 7



	Mathematics
	Arithmetics
	Geometry
	Discrete Structures (DS)
	Sets, relations, and functions
	Basic logic
	Proof techniques
	Basics of counting
	Graphs and trees
	Discrete probability – ❌

	Other Areas

	Computer Science
	Programming Fundamentals (PF)
	Basic programming constructs
	Fundamental data structures
	Reading from and writing to text files
	Event-driven programming

	Algorithms and Complexity (AL)
	Algorithmic analysis
	Algorithmic strategies
	Data structures
	Distributed algorithms – ❌
	Cryptographic algorithms – ❌
	Parallel algorithms – ❌

	Other Areas


