
EJOI syllabus – version 2025

European Junior Olympiad in Informatics Syllabus

The purpose of this document is to serve as a set of guidelines to help decide whether a

task is appropriate for the European Junior Olympiad in Informatics (EJOI). However, it cannot

serve as a strict limitation regarding topics not explicitly or implicitly mentioned. Based on

this document, the International Scientific Committee (ISC) evaluates the task proposals when

selecting the competition tasks. Consequently, another purpose of the Syllabus is to help the

organizers of junior national olympiads prepare their students for the EJOI.

The Syllabus presented below has been compiled using the International Olympiad in In-

formatics (IOI) Syllabus. The topics excluded from the IOI Syllabus are noted with *.

1. Mathematics

1.1. Arithmetics

✅ Integers, operations (including exponentiation), comparison

✅ Fractions, percentages

✅ Basic properties of integers (sign, parity, divisibility)

✅ Prime numbers

✅ GCD and LCM, basic properties of GCD

✅ Basic modular arithmetic: addition, subtraction, multiplication

✅ Representations of integers in different bases

❌ Additional topics from number theory

❌ Advanced modular arithmetic: division and inverse elements

❌ Complex analysis for increasing precision of floating-point computations

❌ Complex numbers

1.2. Geometry

✅ Line, line segment, angle, triangle, rectangle, square, circle

✅ Point, vector, coordinates in the plane

✅ Polygon (vertex, side/edge, simple, convex, inside, area)

✅ Euclidean distance

✅ Pythagorean theorem

❌ Convex hull*

❌ Geometry in three or more dimensions

❌ General conics (parabolas, hyperbolas, ellipses)

❌ Trigonometric functions

1.3. Discrete Structures (DS)

DS1. Sets, relations, and functions

This subsection includes fundamental knowledge needed for thinking of and/or proving

solutions of the competition tasks, but if a specific concept is included in the statement, it will

have a sufficient definition.

✅ Sets (inclusion/exclusion, complements, Cartesian products, power sets)

Page 1 of 7



EJOI syllabus – version 2025

✅ Relations (reflexivity, symmetry, transitivity, equivalence relations, total/linear order

relations, lexicographic order)

✅ Functions (surjections, injections, inverses, composition)

❌ Cardinality and countability (of infinite sets)

DS2. Basic logic

✅ First-order logic

✅ Logical connectives (including their basic properties)

✅ Truth tables

✅ Universal and existential quantification

✅ Using and applying basic rules for implication

❌ Normal forms

❌ Validity

❌ Limitations of predicate logic

DS3. Proof techniques

✅ Notions of implication, converse, inverse, contrapositive, negation, and contradiction

✅ Direct proofs, proofs by: counterexample, contraposition, contradiction

✅ Mathematical induction, strong induction (also known as complete induction)

✅ Recursive mathematical definitions (including mutually recursive definitions)

DS4. Basics of counting

✅ Counting arguments (sum and product rule, arithmetic and geometric progressions,

Fibonacci numbers)

✅ Permutations, variations, and combinations with or without repetition (definitions and

basic applications)

✅ Factorial function, binomial coefficients

✅ Inclusion-exclusion principle

✅ Pigeonhole principle

✅ Pascal’s identity, Binomial theorem

❌ Solving of recurrence relations

❌ Burnside lemma

DS5. Graphs and trees

✅ Undirected graphs (vertex/node, edge, degree, adjacency)

✅ Directed graphs (in-degree, out-degree) and directed acyclic graphs (DAG)

✅ Multigraphs, graphs with self-loops

✅ Bipartite graphs

✅ ‘Decorated’ graphs with edge/node labels, weights, colors

✅ Paths in graphs (undirected and directed path, cycle, Euler trail/cycle, Hamilton

path/cycle)

✅ Reachability (connected component, shortest distance)

✅ Trees (leaf, diameter, forest)

✅ Rooted trees (root, parent, child, ancestor, subtree, binary tree)

Page 2 of 7



EJOI syllabus – version 2025

✅ Spanning trees (and general subgraph)

✅ Traversal strategies

✅ Basic combinatorial properties of graphs1

❌ More general connectivity (biconnectivity and strongly connected components in di-

rected graphs)*

❌ Planar graphs

❌ Hypergraphs

❌ Specific graph classes such as perfect graphs

Some concepts in this subsection don’t have universally recognized definitions. Therefore

if some of the concepts of multigraphs, paths, and cycles are included in the task statement, they

will have a sufficient definition.

DS6. Discrete probability –❌

1.4. OtherAreas

✅ Basics of combinatorial game theory, winning and losing positions

✅ Matrices (definition)

✅ Basic statistics such as arithmetic mean, median

❌ Additional topics from combinatorial game theory (such as Nim game and Sprague-

Grundy theorem)

❌ Linear algebra, including (but not limited to):

∙ Matrix multiplication/exponentiation/inversion, and Gaussian elimination
∙ Polynomial interpolation
∙ Fast Fourier transform

❌ Calculus

❌ Additional topics from statistics

2. Computer Science

2.1. Programming Fundamentals (PF)

PF1. Basic programming constructs

✅ Basic syntax and semantics of C++

✅ Variables, types, expressions, and assignment

✅ Simple I/O

✅ Conditional and iterative control structures

✅ Functions and parameter passing

✅ Recursion

✅ Bitwise operations

✅ Structured decomposition

1This item includes various relationships between the numbers of vertices, edges, and connected components

in graphs, as well as vertex degrees and other similar properties. One example is the Handshaking lemma.

Page 3 of 7



EJOI syllabus – version 2025

PF2. Fundamental data structures

✅ Primitive types (boolean, signed/unsigned integer, character)

✅ Arrays

✅ Strings and string processing

✅ Static and stack allocation (elementary automatic memory management)

✅ Linked structures

✅ Implementation strategies for graphs and trees

✅ Elementary use of real numbers in numerically stable tasks

✅ The floating-point representation of real numbers, the existence of precision issues2

✅ Pointers and references

✅ Data representation in memory

❌ Heap allocation

❌ Runtime storage management

❌ Non-trivial calculations on floating-point numbers, manipulating precision errors

PF3. Reading from and writing to text files

Some competition tasks may be of type output-only, so contestants may be expected to

make their programs read data from and write data to text files according to a prescribed simple

format.

PF4. Event-driven programming

Some competition tasks may involve a dialog with a reactive environment. This will in-

clude implementing such an interaction with the provided environment.

2.2. Algorithms and Complexity (AL)

AL1. Algorithmic analysis

✅ Algorithm specification, precondition, postcondition, correctness, invariants

✅ Asymptotic analysis of upper complexity bounds

✅ Amortized analysis

✅ Big 𝑂 notation

✅ Standard complexity classes: constant, logarithmic, linear, 𝑂(𝑛 log𝑛), quadratic, cu-
bic, exponential, etc.

✅ Time and space trade-offs in algorithms

✅ Empirical performance measurements

✅ Identifying differences among best, average, and worst-case behaviors

✅ Tuning parameters to reduce running time, memory consumption, or other measures

of performance

❌ Asymptotic analysis of average complexity bounds

❌ Using recurrence relations to analyze recursive algorithms (except the simple recurrent

relation used to analyze merge sort)

2Whenever possible, avoiding floating-point calculations completely is the preferred solution, but extensive use

of fractions to perform exact calculations is not expected.

Page 4 of 7



EJOI syllabus – version 2025

AL2. Algorithmic strategies

✅ Simple loop design strategies

✅ Brute-force algorithms (exhaustive search)

✅ Greedy algorithms

✅ Divide-and-conquer

✅ Backtracking (recursive and non-recursive), Branch-and-bound

✅ Dynamic programming, including (but not limited to):

∙ basic and classical DP
∙ DP with bitmasks
∙ digit DP
∙ DP on tree and DAG

❌ Meet in the middle

❌ Square root decomposition (including Mo’s trick)

❌ Heuristics

❌ Discrete approximation algorithms

❌ Randomized algorithms

❌ Finding good features for machine learning tasks

❌ Clustering algorithms (e.g. 𝑘-means, 𝑘-nearest neighbor)
❌ Minimizing multi-variate functions using numerical approaches

AL3a. Basic algorithms

✅ Simple algorithms involving integers: radix conversion, Euclid’s algorithm, primality

test by 𝑂(
√
𝑛) trial division, Sieve of Eratosthenes, factorization (by trial division or

a sieve), fast exponentiation

✅ Simple operations on arbitrary precision integers (addition, subtraction, multiplica-

tion)

✅ Simple arraymanipulation (filling, shifting, rotating, reversal, resizing, minimum/ma-

ximum, prefix sums, histogram, count sort)

✅ Sliding window and two pointers

✅ Simple string algorithms (e.g. naive substring search)

✅ Sequential processing/search and binary search (also binary search the answer)

AL3b. Advanced algorithms

✅ Bucket sort and radix sort

✅ Quicksort and Quickselect to find the 𝑘-th smallest element

✅ 𝑂(𝑛 log𝑛) worst-case sorting algorithms (heap sort, merge sort)

✅ Traversals of ordered trees (pre-, in-, and post-order)

✅ Binary lifting

❌ Ternary search

❌ Minimax heuristic for games*, Alpha-beta pruning

❌ Extended Euclid’s algorithm

❌ Parsing arithmetic expressions (for example, by using shunting yard algorithm)

❌ 2-SAT

❌ Hashing

❌ Advanced string algorithms such as Rabin-Karp, KMP, Z-algorithm, Aho-Corasick

❌ Complex dynamic programming optimizations such as divide and conquer, convex

hull trick*

Page 5 of 7



EJOI syllabus – version 2025

AL3c. Graph algorithms

✅ Depth- and breadth-first traversals

✅ Applications of the depth-first search, such as topological ordering and Euler trail/cy-

cle3

✅ Finding connected components and transitive closures

✅ Shortest-path algorithms (Dijkstra, Bellman-Ford, Floyd-Warshall)

✅ Minimum spanning tree (Jarnik-Prim and Kruskal algorithms)

✅ Graph extension4

❌ Lexicographical BFS, maximum adjacency search and their properties

❌ Biconnectivity in undirected graphs (bridges, articulation points)*

❌ Connectivity in directed graphs (strongly connected components)*

❌ Maximum bipartite matching*

❌ Maximum flow. Flow/cut duality theorem*

AL3d. Geometric algorithms

In general, the ISC has a strong preference for tasks that can be solved using integer arith-

metics to avoid precision issues. This may include representing some computed values as exact

fractions, but the extensive use of such fractions in calculations is discouraged.

Additionally, if a task uses two-dimensional objects, the ISC prefers tasks in which such

objects are rectilinear.

✅ Representing points, vectors, lines, line segments

✅ Coordinate compression

✅ Sweeping line method

❌ Checking for collinear points, parallel/orthogonal vectors, and clockwise turns (for

example, by using determinant evaluation or the cross and dot products of two-

dimensional vectors)*

❌ Computing the area of a polygon from the coordinates of its vertices*

❌ Intersection of two lines*

❌ Checking whether a general polygon contains a point*

❌ Point-line duality

❌ Halfspace intersection, Voronoi diagrams, Delaunay triangulations

❌ Computing coordinates of circle intersections against lines and circles

❌ Linear programming in three or more dimensions and its geometric interpretations

❌ Center of mass of a two-dimensional object

❌ Computing and representing the composition of geometric transformations if the

knowledge of linear algebra gives an advantage

3Note that the Euler tour technique is explicitly excluded in AL4. Here, we are referring only to the classical

algorithms for finding paths and cycles that use each edge exactly once.
4A technique that modifies the graph and adds additional information to each vertex, thereby ‘extending’ the

initial information for every vertex. For example, if we have a graph that is a road network and every road has a

travel time, we can add the current time information to each vertex and view the vertices as pairs – (initial number,

current time).

Page 6 of 7



EJOI syllabus – version 2025

AL4. Data structures

✅ Stacks, queues, and double-ended queues

✅ Binary heap data structures

✅ Knowing and using STL data structures: pair, vector, stack, queue, deque, priority

queue, (multi)set, (multi)map, and unordered structures

✅ Representations of graphs (adjacency lists, adjacency matrix, edge list)

✅ Representation of disjoint sets: the Union-Find data structure

✅ Statically balanced binary search trees. Instances of this include binary indexed trees

(also known as Fenwick trees) and segment trees (also known as interval trees and

tournament trees).

✅ Sparse table for LCA, RMQ queries

✅ Nesting of data structures, such as having a sequence of sets

❌ Lazy propagation technique for segment trees

❌ Merge-sort tree

❌ Persistent data structures*

❌ Balanced binary search trees*

❌ Augmented binary search trees*

❌ Cartesian tree

❌ Two-dimensional tree-like data structures (such as a 2D statically balanced binary tree

or a treap of treaps) used for 2D queries

❌ Complex heap variants such as binomial and Fibonacci heaps

❌ Trie*

❌ String data structures such as suffix array/tree/automata

❌ Decomposition of static trees (heavy-light decomposition, separator structures such

as centroid decomposition)*

❌ Euler tour technique

❌ Data structures for dynamically changing trees and their use in graph algorithms

❌ Using and implementing hash tables (including strategies to resolve collisions) but

one is expected to know and use the STL unordered data structures

AL5. Distributed algorithms –❌

AL6. Cryptographic algorithms –❌

AL7. Parallel algorithms –❌

2.3. OtherAreas

∙ Basic computability –❌

∙ The complexity classes of P and NP –❌

∙ Automata and grammars –❌

Page 7 of 7


	Mathematics
	Arithmetics
	Geometry
	Discrete Structures (DS)
	Sets, relations, and functions
	Basic logic
	Proof techniques
	Basics of counting
	Graphs and trees
	Discrete probability – ❌

	Other Areas

	Computer Science
	Programming Fundamentals (PF)
	Basic programming constructs
	Fundamental data structures
	Reading from and writing to text files
	Event-driven programming

	Algorithms and Complexity (AL)
	Algorithmic analysis
	Algorithmic strategies
	Data structures
	Distributed algorithms – ❌
	Cryptographic algorithms – ❌
	Parallel algorithms – ❌

	Other Areas


