
Садржаj

1 1. круг квалификација 3
Задатак: Године . 3
Задатак: Чоколада . 4
Задатак: Јмбг . 5
Задатак: Комбинација задатака . 7
Задатак: Број сегмената парног збира . 9
Задатак: Контролна цифра . 12
Задатак: Најубедљивија победа . 13
Задатак: Јединичне колоне . 14
Задатак: Постојање троугла . 16
Задатак: Аутопревозник . 19
Задатак: Термометар . 20
Задатак: Једначина . 21
Задатак: Највећа комбинација . 23

2 2. круг квалификација 25
Задатак: Гринготс . 25
Задатак: Путовање . 26
Задатак: Приближан рачун . 27
Задатак: Добри парови . 28
Задатак: Цензура . 30
Задатак: Ширење тајне . 31
Задатак: Хари Потер . 35
Задатак: Квазинаучник . 36
Задатак: Да ли постоји правоугаоник . 38
Задатак: Сума свих поднизова . 40
Задатак: Слагалица . 41
Задатак: Гумене бомбоне . 43
Задатак: Адвокатица . 43
Задатак: Слатки поднизови . 45

3 Општинско такмичење 49
Задатак: Буџет за летовање . 49
Задатак: Упоредити цифре . 50
Задатак: Дељивост са 3 7 21 . 51
Задатак: Распоређивање слика . 52

1

2 САДРЖАJ

Задатак: Свеска . 53
Задатак: Верзије софтвера . 54
Задатак: Жућков рејон . 56
Задатак: Јелка . 57
Задатак: Питагорина тројка . 58
Задатак: Учешће . 60
Задатак: Баундинг бокс . 61
Задатак: Различите мајице . 63

Глава 1

1. круг квалификација

Задатак: Године

Аутори: Нина Икодиновић, Михајло Марковић

Данас је Сара нашла фотографију са 𝑌 -тог рођендана другарице Миње, која је настала истог
датума као и данас. Тада је Сара имала 𝑋 година. Ако данас Сара има 𝑍 година, помозите јој да
одреди колико година Миња пуни данас како би могла да је позове и честита јој рођендан.

Опис улаза

У првом реду уноси се природан број 𝑋 (1 ≤ 𝑋 ≤ 100), број Сариних година на фотографији.
У другом реду уноси се природан број 𝑌 (1 ≤ 𝑌 ≤ 100), број Мињиних година на фотографији.
У трећем реду уноси се природан број 𝑍 (𝑋 < 𝑍 ≤ 100), број Сариних година данас.
Опис излаза

У једном реду стандардног излаза исписати један број који представља колико Миња данас пуни
година.

Пример 1
Улаз
10
14
36

Излаз
40

Објашњење
Када је Сара имала 10 година, Миња је пунила 14. Данас Сара има 36 го-
дина, па Миња пуни 40.

Пример 2
Улаз
17
13
66

Излаз
62

Решење

Од тренутка настанка фотографије до данас прошло је 𝑍 − 𝑋 година. Према томе, Миња данас
пуни 𝑌 + (𝑍 − 𝑋) година.

3

4 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

#include <iostream>

using namespace std;

int main()
{

int x,y,z;
cin>>x>>y>>z;
int g=y+z-x;
cout << g << endl;
return 0;

}

Задатак: Чоколада

Аутор: Теодора Обрадовић

Неца и Цеца су брат и сестра који се стално свађају. Њихова богата тетка из Немачке није знала
за то и купила им је једну огромну чоколаду. С обзиром да обоје желе највеће парче чоколаде,
договорили су се да Неца подели чоколаду на два дела, а да Цеца бира који део жели. Неца је
знао да ће Цеца хтети да одабере већи део, па је он на брзину узео и сакрио један део, а њој
показао други (за који она не зна да ли је већи или мањи). Цеца зна да чоколада укупно има 𝑥
редова, а део који јој је Неца показао има 𝑦 редова.
Помозите Цеци и напишите јој колико редова има већи део чоколаде.

Опис улаза

Прва и једина линија стандардног улаза садржи два природна броја 𝑥 и 𝑦 (1 ≤ 𝑥 < 100, 1 ≤
𝑦 < 100) који представљају редом број редова целе чоколаде и број редова дела који је остао
Цеци.

Опис излаза

На стандардни излаз исписати колико редова има већи део чоколаде.

Пример 1
Улаз
11 4

Излаз
7

Објашњење
Чоколада има 11 редова, а Цеци је остало 4. То значи да је Неца сакрио
део који има 7 редова и то је уједно и већи део.

Пример 2
Улаз
5 3

Излаз
3

Објашњење
Чоколада има 5 редова, а Цеци је остало 3. То значи да је Неца сакрио део
који има 2 реда, па је већи део онај који је остао Цеци.

Решење

Опис главног решења

Део чоколаде који види Цеца се уноси са улаза (𝑦), а део чоколаде који је код Неце може да се
израчуна као разлика целе чоколаде и Цециног дела (формула: 𝑥 − 𝑦). Ако је Цецин део већи
исписује се њен део, а ако није исписује се Нецин део.

5

#include <iostream>

using namespace std;

int main() {
int cela, deo;
cin >> cela >> deo;
if (cela - deo > deo)
cout << cela - deo;

else
cout << deo;

return 0;
}

Задатак: Јмбг

Аутор: Душан Попадић

Jединствени матични број грађана има 13 цифара подељених у 6 група. У овом задатку посма-
трамо само прве три групе, остале нам нису битне: - Прве две цифре одређују ког дана у месецу
је особа рођена - Друге две цифре одређују месец у ком је особа рођена (01 - јануар, 02 - фебру-
ар, …, 12 - децембар) - Наредне три цифре одређују годину када је особа рођена. Сматра се да
је особа рођена између 1900. и 2025. године, па се прва цифра године подразумева.

На основу унетих првих 7 цифара матичног броја одредити колико особа има година на данашњи
датум (15.11.2025).

Опис улаза

У првих 7 редова стандардног улаза се налази по једна од првих 6 цифара матичног броја. Га-
рантује се да ће унети подаци бити исправни (постоји унети датум и он није након 15.11.2025)
и да ће прва цифра године бити или 9 или 0.

Опис излаза

У једином реду стандардног излаза исписати један број - колико особа има напуњених година
данас. Ако је особи данас рођендан, сматра се да има онолико година колико данас пуни.

Пример 1
Улаз
2
9
1
2
9
9
5

Излаз
29

Објашњење
Особа у питању је рођена 29. децембра 1995. године и данас има 29 година.

6 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

Пример 2
Улаз
1
4
0
6
0
0
7

Излаз
18

Објашњење
Особа у питању је рођена 14. јуна 2007. године и данас има 18 година.

Пример 3
Улаз
1
8
0
1
0
2
5

Излаз
0

Објашњење
Беба у питању је рођена 18. јануара 2025. године и данас има 0 напуњених
година.

Пример 4
Улаз
1
5
1
1
0
0
0

Излаз
25

Објашњење
Особа у питању је рођена 15. новембра 2000. године и данас пуни 25 годи-
на.

Решење

Прво је потребно да учитамо све неопходне податке са стандардног улаза. Олакшавајућа окол-
ност је што се информације о датуму рођења учитавају цифра по цифра, па лако можемо да
реконструишемо датум. На пример, гледајући са лева на десно, ако је прва цифра дана рође-
ња 𝑎 и друга цифра дана рођења 𝑏, тада уз помоћ позиционог записа броја лако добијамо дан
рођења према следећој формули 𝑎 ∗ 10 + 𝑏. На сличан начин можемо реконструисати месец
и годину рођења, што препуштамо читаоцу. Дан, месец и годину рођења ћемо чувати редом у
променљивама dan, mesec, godina.

Након реконструкције датума рођења, потребно је да израчунамо број година које корисник има
дана 15.11.2025. Очигледно, број година корисника ће бити 𝑔 = 2025 − 𝑔𝑜𝑑𝑖𝑛𝑎. Међутим,
морамо водити рачуна о дану и месецу рођења. Уколико је корисников рођендан после 15.11.,
јасно је да га још није прославио, па у том случају број година морамо умањити за један, тј. 𝑔 =
2025 − 𝑔𝑜𝑑𝑖𝑛𝑎 − 1.
#include <iostream>

using namespace std;

int main() {

7

int dan = 0, mesec = 0, godina = 0;
int x;

cin >> x;
dan = dan * 10 + x;
cin >> x;
dan = dan * 10 + x;
cin >> x;
mesec = mesec * 10 + x;
cin >> x;
mesec = mesec * 10 + x;
cin >> x;
godina = godina * 10 + x;
cin >> x;
godina = godina * 10 + x;
cin >> x;
godina = godina * 10 + x;

if (godina > 900) godina += 1000;
else godina += 2000;

int g = 2025 - godina;

if(mesec > 11 || (mesec == 11 && dan > 15)) g--;

cout << g;

return 0;
}

Задатак: Комбинација задатака

Аутор: Филип Марић

У свету бројева води се турнир у ком се такмиче црвени и плави тим. Сваки тим има своје борце,
представљене бројевима. Када се бирају парови који ће се надметати, борба може почети само
ако борци нису исте снаге, односно ако њихови бројеви нису једнаки. Написати програм који
исписује све могуће парове бораца за које може почети борба.

Опис улаза

• Први ред стандардног улаза садржи број 𝑐, други ред 𝑐 различитих бројева (борци црвеног
тима).

• Трећи ред улаза садржи број 𝑝, четврти 𝑝 различитих бројева (борци плавог тима).
Опис излаза

Исписати све могуће парове за борбу, сваки у посебном реду. У сваком пару је потребно исписати
прво број такмичара из црвеног тима, па број такмичара из плавог тима. Паровe исписати у
произвољном редоследу.

8 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

Пример
Улаз
3
5 1 3
3
1 4 3

Излаз
5 1
5 4
5 3
1 4
1 3
3 1
3 4

Објашњење
Такмичар са бројем 5 из црвеног тима може да се такмичи са свим так-
мичарима плавог тима, такмичар са бројем 1 из црвеног тима може да се
такмичи са такмичарима 4 и 3 из плавог тима (не може против 1 јер имају
исти број), а такмичар са бројем 3 из црвеног тима може да се такмичи са
такмичарима 1 и 4 из плавог тима.

Решење

Опис главног решења

Прво треба учитати елементе, тј. бројеве црвеног тима, а затим бројеве плавог тима. Сачуваћемо
их у векторима, тј. низовима који се редом зову 𝑐 и 𝑝 и имају 𝑛𝑐 и 𝑛𝑝 елемената. Да бисмо ре-
шили задатак потребно је да извршимо пажљиву анализу текста и разумемо правила такмичења.
Постоје два важна ограничења у тексту задатка:

1. У сваком тиму не постоје два борца исте снаге, тј. не постоје дупликати у низовима. Ово
не значи да се у црвеном и плавом тиму не може наћи борац исте снаге.

2. Борба је могућа само између бораца различитих снага.

Одавде се лако може закључити следеће:

1. Борба се не може десити, само ако су борац из црвеног тима и борац из плавог тима исте
снаге.

2. С обзиром да су сви елементи у низовима различити, то значи да се сваки борац из црвеног
тима може борити са најмање 𝑛𝑝 − 1 бораца из плавог тима, што одговара случају када
у плавом тиму постоји борац чија је снага једнака снази црвеног борца. Са друге стране,
сваки борац из црвеног тима се може борити са највише 𝑛𝑝, што одговара случају када у
плавом тиму не постоји борац једнаке снаге снази црвено борца.

Додатно, одавде можемо закључити да у најгорем случају имамо 𝑛𝑝 ⋅ 𝑛𝑐 могућих парова бораца
које треба приказати. Управо овај закључак нам говори да задатак можемо да решимо једно-
ставним упоређивањем свих могућих парова уз помоћ двоструке петље. Искуснији такмичар би
могао помислити да постоји решење које је ефикасније од овога, али то није случај, јер се од
нас очекује да прикажемо свих 𝑛𝑝 ⋅ 𝑛𝑐 могућих парова, па нема сврхе дизајнирати ефикасније
решење.

#include <iostream>
#include <vector>

using namespace std;

int main() {
int nc;
cin >> nc;
vector<int> c(nc);
for (int i = 0; i < nc; i++)
cin >> c[i];

9

int np;
cin >> np;
vector<int> p(np);
for (int i = 0; i < np; i++)
cin >> p[i];

for (int i = 0; i < nc; i++)
for (int j = 0; j < np; j++)

if (c[i] != p[j])
cout << c[i] << " " << p[j] << endl;

return 0;
}

Задатак: Број сегмената парног збира

Аутор: Филип Марић

Криптографски систем посматра све сегменте датог низа битова (тј. бројева 0 и 1). Ако је збир
свих битова у неком сегменту паран, систем га сматра валидним. Твој задатак је да за дати низ
битова одредиш колико валидних сегмената постоји.

Напомена: Сегмент низа је било који део низа који садржи узастопне елементе и није празан. На
пример, сегменти низа [1, 2, 3] су [1], [1, 2], [1, 2, 3], [2], [2, 3] и [3].
Опис улаза

У првом реду стандардног улаза налази се цео број 𝑛 (1 ≤ 𝑛 ≤ 5 ⋅ 104).

У другом реду стандардног улаза налази се 𝑛 размаком раздвојених целих бројева 𝑎1, 𝑎2, … , 𝑎𝑛
(ови бројеви су 0 или 1) - представљају чланове низа.
Додатна ограничењаТест примери су подељени у две групе: - У тест примерима вредним 60
поена важи 𝑛 ≤ 100; - У тест примерима вредним 40 нема додатних ограничења.
Опис излаза

На стандардни излаз исписати тражени број валидних сегмената.

Пример
Улаз
5
1 0 1 1 0

Излаз
7

Објашњење
Сегменти парног збира су [1, 0, 1], [0], [0, 1, 1], [0, 1, 1, 0], [1, 1],
[1, 1, 0] и [0].

Решење

Опис наивног решења

Да бисмо решили задатак потребно је да прво учитамо дати низ 𝑎 нула и јединица. Наивно,
можемо да испитамо сваки могући сегмент, тј. подниз узастопних елемената и да израчунамо
његов збир.

#include <iostream>
#include <vector>

10 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

using namespace std;

int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++)
cin >> a[i];

int broj = 0;
for (int i = 0; i < n; i++) {
int zbir = 0;
for (int j = i; j < n; j++) {
zbir += a[j];
if (zbir % 2 == 0)

broj++;
}

}
cout << broj << endl;
return 0;

}

Опис главног решења

Наивно решење је једноставно, али неефикасно за велике низове, па је потребно да размислимо
како можемо да побољшамо ефикасност. Ефикасност наивног решења је квадратна по броју
елемената низа, тј.𝑂(𝑛2). Да бисмо то постигли потребно је да кренемо од дефиниције проблема
који решавамо и да уочимо да ли постоји неко правило које можемо једноставно да искористимо.

С обзиром да треба да одредимо колико има сегмената чији је збир паран, могли бисмо да кре-
немо од прецизног дефинисања када сегмент има паран збир. Да би сегмент имао паран збир, он
мора имати паран број јединица. Одавде можемо да закључимо да нам треба ефикасан начин
израчунавања збирова сегмената. То можемо лако постићи, ако одржавамо префиксне збирове
нашег низа. Прецизније, сегмент низа 𝑎[𝑖, … , 𝑗] имаће паран збир само ако су префикси низа
𝑎[0, … , 𝑖] и 𝑎[0, … , 𝑗] исте парности. Прецизније, број парних сегмената једнак је броју префик-
са са истом парношћу.

Због свега наведеног у нашем решењу ћемо одржавати следеће вредности:

• ps - текућа префиксна сума.
• broj - број сегмената исте парности.
• brojParnihPS - број сегмената са парном префиксном сумом.
• brojNeparnihPS - број сегмената са непарном префиксном сумом.

Префиксне суме можемо да рачунамо инкрементално и да током рачунања префиксних сума
истовремено одржавамо и вредности осталих променљивих. Као и у сваком инкременталном
решењу, крећемо од празног сегмента и у свакој итерацији текући сегмент проширујемо сле-
дећим елементом низа. Приметимо да то проширење може бити елементом 0 или 1. Уколико
проширујемо елементом 0, парност текуће префиксне се неће променити, док проширивањем
са 1 мењамо парност текуће префиксне суме. Дакле, ако је нова префиксна сума парна, тада но-

11

ви елемент формира сегменте парног збира са свим претходним парним сегментима. Ако је нова
префиксна сума непарна, тада нови елемент формира сегменте парног збира са свим претходним
непарним сегментима.

Да би читаоцу била јасна ова идеја, размотрићемо корак по корак израчунавање префиксних
сума на примеру низа из текста задатка. Нека је дат низ 1, 0, 1, 1, 0. Редослед итерација и вред-
ности променљивих можемо да прикажемо следећом таблицом.

i

a[i]
(еле-
мент
ко-
јим
про-
ши-
рује-
мо
пре-
фикс)

ps (нова
вредност
префиксне
суме) Парност префикса

broj (текући број
сегмената парног збира) brojParnihPSbrojNeparnihPS

0 1 1 непаран број += brojNeparnihPS
= 0 → 0

1 1

1 0 1⊕0=1 непаран број += brojNeparnihPS
= 1 → 1

1 2

2 1 1⊕1=2 паран број += brojParnihPS = 1
→ 2

2 2

3 1 2⊕1=3 непаран број += brojNeparnihPS
= 2 → 4

2 3

4 0 3⊕0=3 непаран број += brojNeparnihPS
= 3 → 7

2 4

Ради једнставности довољно је да чувамо само парност префиксне суме, јер од парности зависи
да ли формирамо сегменте са парним или непарним претходнисм сегментима. Приметимо да је
ефикасно решење линеарне сложености, тј. 𝑂(𝑛). Решење је у наставку.
#include <iostream>
#include <vector>

using namespace std;

int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++)
cin >> a[i];

int broj = 0;
int ps = 0;
int brojParnihPS = 1;

12 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

int brojNeparnihPS = 0;
for (int i = 0; i < n; i++) {
ps = (ps + a[i]) % 2;
if (ps % 2 == 0) {
broj += brojParnihPS;
brojParnihPS++;

} else {
broj += brojNeparnihPS;
brojNeparnihPS++;

}
}

cout << broj << endl;
return 0;

}

Задатак: Контролна цифра

Аутор: Филип Марић

Идентификациони бројеви (нпр. ISBN, JMBG, бројеви банковних рачуна и кредитних картица)
се обично штите од грешака увођењем тзв. контролне цифре. Последња цифра броја се одређује
тако да се нека израчуната статистика свих цифара броја буде дељива неким бројем. На пример,
четвороцифрени број𝐴𝐵𝐶𝐷 можемо заштитити контролном цифром𝑋 тако што ћемо𝑋 одре-
дити тако да у добијеном броју 𝐴𝐵𝐶𝐷𝑋 важи да је 𝐴 + 2𝐵 + 3𝐶 + 4𝐷 + 𝑋 дељиво бројем
10. Написати програм који за унети четвороцифрени број 𝐴𝐵𝐶𝐷 одређује најмању вредност
конторлне цифре 𝑋.

Опис улаза

Са стандардног улаза се учитава четвороцифрени број 𝐴𝐵𝐶𝐷 (који евентуално може да има и
водеће нуле).

Опис излаза

На стандардни излаз исписати контролну цифру 𝑋.

Пример 1
Улаз
1234

Излаз
0

Објашњење
Важи да је 1 + 2 ⋅ 2 + 3 ⋅ 3 + 4 ⋅ 4 = 30, који је већ дељив са 10. Зато је
најмањи број 𝑋 који се може додати на овај број да би он постао дељив са
10 број 𝑋 = 0.

Пример 2
Улаз
8352

Излаз
3

Објашњење
Важи да је 8 + 2 ⋅ 3 + 3 ⋅ 5 + 4 ⋅ 2 = 37. Најмањи број 𝑋 који се може
додати на овај број да би он постао дељив са 10 је 3.

Решење

Учитавамо број и одређујемо му појединачне цифре𝐴,𝐵,𝐶 и𝐷. Након тога можемо израчунати
вредност израза 𝐴 + 2𝐵 + 3𝐶 + 4𝐷. На њега треба додати неку вредност 𝑋 тако да збир буде

13

дељив са 10 тј. да му је последња цифра нула. Ако је последња цифра збира𝐴+2𝐵 +3𝐶 +4𝐷
нека цифра 𝑘, тада се може додати број𝑋 = 10−𝑘. Ово је и коначно решење у свим случајевима
осим када је 𝑘 = 0, јер је тада уместо𝑋 = 10могуће додати𝑋 = 0. Зато је пре исписа коначног
резултата потребно још одредити остатак при дељењу 𝑋 са 10 (или гранањем обрадити овај
специјални случај).

#include <iostream>

using namespace std;

int main() {
int broj;
cin >> broj;
// odredjujemo pojedinacne cifre broja
int A = (broj / 1000) % 10;
int B = (broj / 100) % 10;
int C = (broj / 10) % 10;
int D = (broj / 1) % 10;
// odredjujemo kontrolnu cifru - najmanju cifru X tako da
// A+2B+3C+4D+X bude deljivo sa 10
int X = (10 - (A+2*B+3*C+4*D) % 10) % 10;
cout << X << endl;
return 0;

}

Задатак: Најубедљивија победа

Аутор: Филип Марић

Одиграно је коло у кошаркашкој лиги и познати су резултати. Напиши програм који одређује
највећу разлику којом је неки тим победио свог противника.

Опис улаза

Са стандардног улаза се уноси природан број 𝑛 (1 ≤ 𝑛 ≤ 32), а затим 𝑛 парова целих бројева
који представљају резултате 𝑛 утакмица.

Опис излаза

На стандардни излаз исписати највећу разлику.

14 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

Пример
Улаз
9
98 91
88 63
62 76
96 86
99 75
91 73
88 79
80 69
63 88

Излаз
25

Објашњење
Најубедљивију победу су остварили тимови који су своје противнике до-
били резултатом 88:63 (сасвим случајно, то се у овом колу догодило два
пута).

Решење

Задатак се своди на уобичајено одређивање максимума низа бројева. Разлике у поенима мора-
ју бити природни бројеви, па на старту можемо да претпоставимо да је максимална разлика 0.
Током учитавања бројева у петљи, одредићемо њихову апсолутну разлику и упоредити је са те-
кућим максимумом. Ако је текућа разлика већа од максимума, онда ће то бити нови максимум.
На крају, потребно је исписати вредност максимума коју смо одредили.

#include <iostream>
#include <cmath>

using namespace std;

int main() {
int n;
cin >> n;
int maxRazlika = 0;
for (int i = 0; i < n; i++) {
int d, g;
cin >> d >> g;
maxRazlika = max(maxRazlika, abs(d - g));

}
cout << maxRazlika << endl;
return 0;

}

Задатак: Јединичне колоне

Аутори: Милан Вугделија, Душан Попадић

Дата је матрица бројева димензија 𝑛 × 𝑚 која садржи само нуле и јединице. Написати програм
који исписује колико постоји колона у матрици у којима је број нула највише 2.

Опис улаза

У првом реду се налазе два броја 𝑛 и𝑚 (2 ≤ 𝑛, 𝑚 ≤ 100) који представљају димензије матрице.
У наредних 𝑛 редова се налази по 𝑚 бројева раздвојених размацима (сви су или 0 или 1). Ови
бројеви представљају дату матрицу.

15

Опис излаза

У једином реду стандардног излаза исписати тражени број колона.

Пример
Улаз
4 5
1 0 1 1 0
1 1 0 1 0
1 0 0 1 1
1 0 0 0 1

Излаз
3

Објашњење
Прва, четрврта и пета колона имају највише две нуле.

Решење

Да бисмо одредили број колона у којима нема више од две нуле потребно је да кроз матрицу
прођемо по колонама и за сваку колону избројимо колико има нула. Уколико је тај број мањи
или једнак 2, повећавамо бројач. На крају исписујемо вредност бројача.

#include <iostream>

using namespace std;

int main() {
int n, m;
cin >> n >> m;
int mat[100][100];
for(int i = 0; i < n; i++)
{

for(int j = 0; j < m; j++)
{

cin >> mat[i][j];
}

}

int brk = 0;

for(int j = 0; j < m; j++)
{

int brn = 0;
for(int i = 0; i < n; i++)
{

if(mat[i][j] == 0) brn++;
}
if(brn <= 2) brk++;

}

cout << brk;
return 0;

}

16 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

Задатак: Постојање троугла

Аутор: Љубомир Бановић

Дата је гомила на којој се налази 𝑛 штапића. Потребно је одредити да ли постоје три различита
штапића са гомиле, таква да формирају троугао. Штапићи дужине 𝑎, 𝑏 и 𝑐 формирају троугао
ако важе следеће неједнакости: 𝑎 + 𝑏 > 𝑐 𝑏 + 𝑐 > 𝑎 𝑐 + 𝑎 > 𝑏
Опис улаза

У првом линији стандардног улаза се налази један ненегативан цео број 𝑛 (1 ≤ 𝑛 ≤ 105).

У другој линији стандардног улаза се налази 𝑛 ненегативних целих бројева: 𝑎1, 𝑎2, … 𝑎𝑛 (1 ≤
𝑎𝑖 ≤ 109) који представљају дужину штапића на гомили.

Додатна ограничењаТест примери су подељени у две групе: - У тест примерима вредним 30
поена важи 𝑛 ≤ 100; - У тест примерима вредним 70 поена нема додатних ограничења.
Опис излаза

На стандардни излаз потребно је исписати da ако постоје таквиштапићи, а у супротном исписати
ne.

Пример 1
Улаз
5
23 2 10 3 11

Излаз
da

Пример 2
Улаз
3
3 27 10

Излаз
ne

Решење

Наивно решење

Задатак можемо решити директно тако што у трострукој for петљи упоредимо све могуће тројке
штапића и испитамо да ли испуњавају услов. Решење је идејно лако, али је неефикасно за велико
𝑛, јер је временска сложеност овог решења 𝑂(𝑛3). Ово решење доноси 30 поена.
#include <bits/stdc++.h>

using namespace std;

int main() {
ios::sync_with_stdio(0);
cin.tie(0);

int n;
cin >> n;

vector<int> v(n);
for(auto &z : v) cin >> z;

for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {

for(int k = j + 1; k < n; ++k) {
if(v[i] + v[j] > v[k] && v[i] + v[k] > v[j] && v[k] + v[j] > v[i]) {

17

cout << "da" << '\n';
return 0;

}
}

}
}

cout << "ne" << '\n';
}

Решење соритрањем и посматрањем узастопних бројева

Да би наш програм радио довољно брзо за велике вредности 𝑛, потребно је да осмислимо ефи-
каснији алгоритам. Потребно је да осмислимо решење које неће испитивати све могуће тројке
штапића. Кренућемо од неједнакости троугла која каже да се од дужи чије су дужине редом 𝑎,
𝑏 и 𝑐 може формирати троугао само ако важе следеће неједнакости:

• 𝑎 + 𝑏 > 𝑐
• 𝑏 + 𝑐 > 𝑎
• 𝑐 + 𝑎 > 𝑏

Ако замислимо како изгледа разнострани троугао, ове услове можемо мало да релаксирамо. Пре-
цизније, није потребно испитивати све три неједнакости, ако одредимо најдужу страницу троу-
гла. Да бисмо формирали троугао довољно је да дужина најдуже страница троугла буде мања од
збира дужина преостале две странице. Дакле, за сваки штапић 𝑣𝑖 треба да одредимо два штапића
𝑣𝑗, 𝑣𝑘 таква да су њихове дужине мање или једнаке од дужине 𝑣𝑖, тј. мора важити 𝑣𝑗 ≤ 𝑣𝑘 ≤ 𝑣𝑖.
У том случају, троугао бисмо могли да формирамо ако би важило 𝑣𝑗 + 𝑣𝑘 > 𝑣𝑖.

Да би наш алгоритам био довољно брз, потребно је да ову претрагу учинимо што је могуће
ефикаснијом. Један начин да то урадимо, јесте да уочимо да нама не требају било какви штапићи
𝑣𝑗, 𝑣𝑘 за које важи 𝑣𝑗 + 𝑣𝑘 > 𝑣𝑖, већ нам требају они 𝑣𝑗, 𝑣𝑘 за које постоји највећа шанса да буде
испуњена неједнакост 𝑣𝑗 + 𝑣𝑘 > 𝑣𝑖. Лако се уочава да то морају бити највећи могући 𝑣𝑗, 𝑣𝑘 који
су мањи од 𝑣𝑖.

Сортираћемо наш низ неопадајуће и провераваћемо редом да ли тројке елемената 𝑣𝑖−2, 𝑣𝑖−1, 𝑣𝑖
задовољавају неједнакост 𝑣𝑖−2 + 𝑣𝑖−1 > 𝑣𝑖. Чим наиђемо на такву тројку, то значи да од датих
штапића можемоформирати троугао. Ако не нађемо тројку која испуњава дату неједнакост, онда
не можемо формирати троугао.

Временска сложеност ефикасног решења је 𝑂(𝑛 ⋅ 𝑙𝑜𝑔(𝑛)).
#include <bits/stdc++.h>

using namespace std;

int main() {
ios::sync_with_stdio(0);
cin.tie(0);

int n;
cin >> n;

18 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

vector<int> v(n);
for(auto &z : v) cin >> z;

sort(v.begin(), v.end());

for(int i = 2; i < n; ++i) {
if(v[i - 2] + v[i - 1] > v[i]) {

cout << "da" << '\n';
return 0;

}
}

cout << "ne" << '\n';

return 0;
}

Решење засновано на Фибоначијевом низу

Постоји још један начин на који може да се реши овај задатак. Користићемо резултат из претход-
ног решења: ако је низ сортиран и не садржи троугао, за сваки индекс 𝑖 важи: 𝑣𝑖 + 𝑣𝑖+1 ≤ 𝑣𝑖+2.

Конструишимо најдужи сортирани (растући) низ без троуглова. При конструкцији овог низа,
морамо да пазимо на оригинално ограничење задатка, да је сваки члан низа природан број мањи
или једнак 109. За прва два члана низа бирамо две јединице (најмања могућа дужина штапића),
а за следеће чланове низа бирамо штапић такав да је једнак дужини збира претходна два (дужина
овог штапића мора да испуњава неједнакост, а бирамо најмању такву вредност). Овим приступом
смо добили низ 1, 1, 2, 3, 5, 8, 13...
Ако мало боље обратимо пажњу, можемо да приметимо да је ово заправо Фибоначијев низ!
Како Фибоначијев низ расте брзо (експоненционално, 45. члан Фибоначијевог низа је већи од
109), закључујемо да сваки низ дужине веће од 44 мора да садржи троугао, јер ће у супротном
постојати индекс за који не важи неједнакост. Решење овим приступом би подразумевао испис
“da” за сваки низ величине веће од 44 и употреба наивног кубног решења за низове мање или
једнаке дужини 44.

Временска сложеност овог решења је 𝑂(𝑛3) ако је 𝑛 < 100 иначе је 𝑂(1). Дакле, колико год да
је𝑛 овај програм извршава највише милион (1003) итерација, па можемо рећи да има константну
сложеност.

#include <bits/stdc++.h>

using namespace std;

int main() {
ios::sync_with_stdio(0);
cin.tie(0);

int n;
cin >> n;
vector<int> v(n);

19

for(auto &z : v) cin >> z;

if(n > 100) {
cout << "da" << '\n';
return 0;

}

for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {

if(i == j) continue;

for(int k = 0; k < n; ++k) {
if(i == k) continue;
if(j == k) continue;

if(((v[i] + v[j] > v[k]) && (v[i] + v[k] > v[j])) && (v[j] + v[k] > v[i])) {
cout << "da" << '\n';
return 0;

}
}

}
}

cout << "ne" << '\n';
}

Задатак: Аутопревозник

Аутори: Нина Икодиновић, Душан Попадић

На путу Београд - Крагујевац постоји 𝑁 аутобуских станица. На свакој од тих станица путник
може да купи аутобуску карту до било које друге станице на том путу. Колико различитих карата
постоји у продаји тако да су и почетна и крајња станица на путу Београд - Крагујевац?

Опис улаза

У првом и једином реду се уноси природни број 𝑁 (2 ≤ 𝑁 ≤ 100), број аутобуских станица на
релацији Београд - Крагујевац.

Опис излаза

Излаз је једна вредност која представља број различитих карата које постоје у продаји.

Пример 1
Улаз
3

Излаз
6

Објашњење
Рецимо да постоје 3 станице: Београд, Аранђеловац и Крагујевац. Разли-
читих карата има 6: Београд - Аранђеловац, Београд - Крагујевац, Аранђе-
ловац - Београд, Аранђеловац - Крагујевац, Крагујевац - Београд и Крагу-
јевац - Аранђеловац.

20 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

Пример 2
Улаз
5

Излаз
20

Пример 3
Улаз
67

Излаз
4422

Решење

Задатак се врло лако може решити пажљивом анализом проблема. Ако је дато 𝑛 станица дуж
пута, јасно је да се из сваке поједначне станице могу купити карте до преосталих 𝑛 − 1 станица.
С обзиром да станица дуж пута има 𝑛, укупан број карата које се могу купити је 𝑛 ∗ (𝑛 − 1).
Решење је у наставку.

#include <iostream>

using namespace std;

int main() {
int n;

cin >>n;
cout<<n*(n-1)<<endl;

return 0;
}

Задатак: Термометар

Аутор: Огњен Тешић

Познате су минимална и максимална температура за данашњи дан. Термометар је, међутим, по-
кварен, па не показује увек стварну температуру.

Потребно је написати програм који на основу унете вредности температуре 𝑇 , коју показује
термометар, исписује једну од следећих порука: - ISPOD MINIMUMA - ако је𝑇 мања одминималне
температуре𝐴; - IZNAD MAKSIMUMA - ако је 𝑇 већа од максималне температуре𝐵; - NA GRANICI
- ако је 𝑇 једнака 𝐴 или 𝐵; - IZMEDJU - ако је 𝐴 < 𝑇 < 𝐵.
Опис улаза

Једина линија стандардног улаза садржи три цела броја раздвојена размаком, 𝐴, 𝐵, 𝑇 (−10 ≤
𝐴, 𝐵, 𝑇 ≤ 40, 𝐴 < 𝐵) који представљају, редом, минималну температуру на данашњи дан,
максималну температуру на данашњи дан и температуру коју термометар показује.

Опис излаза

Исписати једну од следећих порука: ISPOD MINIMUMA, IZNAD MAKSIMUMA, NA GRANICI или
IZMEDJU. Важно је да порука коју испишеш буде идентична као једна од наведених (исте речи
и велика слова).

Пример 1
Улаз
5 15 12

Излаз
IZMEDJU

Објашњење
Објашњење. Минимална температура за данашњи дан је 5, а максимал-
на 15. Термометар показује 12, па је вредност између минималне и мак-
сималне температуре.

21

Пример 2
Улаз
6 14 20

Излаз
IZNAD MAKSIMUMA

Пример 3
Улаз
4 16 4

Излаз
NA GRANICI

Пример 4
Улаз
-5 3 -10

Излаз
ISPOD MINIMUMA

Решење

Овај задатак представља класичну проверу припадности броја задазим опсезима који се решава
уланчавањем неколико if - else блокова.

#include <iostream>

using namespace std;

int main() {
int A, B, T;
cin >> A >> B >> T;

if (T < A) {
cout << "ISPOD MINIMUMA";

}
else if (T > B) {

cout << "IZNAD MAKSIMUMA";
}
else if (T == A || T == B) {

cout << "NA GRANICI";
}
else {

cout << "IZMEDJU";
}
return 0;

}

Задатак: Једначина

Аутор: Александар Николић

Дат је низ 𝑎1, 𝑎2, … , 𝑎𝑛 и број 𝑥. Одредити број парова индекса (𝑖, 𝑗) таквих да је 𝑖 < 𝑗 и важи
𝑎𝑖 + 𝑎𝑗 = 𝑥, као и 𝑎𝑖 − 𝑎𝑗 = 𝑥.
Опис улаза

Први ред стандардног улаза садржи два цела броја 𝑛 и 𝑥 - представљају број чланова низа и број
𝑥.
Други ред стандардног улаза садржи 𝑛 размаком раздвојених целих бројева 𝑎1, 𝑎2, … , 𝑎𝑛 - пред-
стављају чланове низа.

22 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

Опис излаза

Један број - укупан број парова.

Ограничења- 1 ≤ 𝑛 ≤ 200.000 - −109 ≤ 𝑥 ≤ 109

Тест примери су подељени у три групe:

• у тест примерима вредним 10 поена важи: 𝑥 = 0;
• у тест примерима вредним 40 поена важи: 𝑛 ≤ 1000;
• у тест примерима вредним 50 поена нема додатних ограничења.

Пример
Улаз
5 2
2 0 3 0 2

Излаз
2

Објашњење
Објашњење. Парови чији су индекси (1, 2) и (1, 4) испуњавају услов
задатка (нумерација почиње од 1, не од 0).

Решење

Наивно решење

Најједноставније је овом задатку приступити директно: пролазимо кроз све парове и проверава-
мо да ли су испуњени задати услови. Ово се једноставно ради са две угнежђене петље и једном
провером услова. Сложеност овог решења је 𝑂(𝑛2) и оно доноси 40 поена.
#include <iostream>
#include <vector>

using namespace std;

int main() {

int n, x;
cin >> n >> x;

vector<int> a(n);
for(int i = 0; i < n; i++)

cin >> a[i];

long long resenje = 0;

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j++)

if(a[i] + a[j] == x && a[i] - a[j] == x)
resenje++;

cout << resenje;
}

Оптимално решење

Хајде да мало боље погледамо услове који су нам дати. Пошто важи 𝑎𝑖 + 𝑎𝑗 = 𝑥 и 𝑎𝑖 − 𝑎𝑗 = 𝑥
онда мора важити и 𝑎𝑖 + 𝑎𝑗 = 𝑎𝑖 − 𝑎𝑗, а одатле очигледно следи 𝑎𝑗 = 0. Када у једну од прве

23

две једначине заменимо вредност 0 за 𝑎𝑗 добијамо 𝑎𝑖 = 𝑥. Дакле, поставља се питање колико
има парова таквих да је 𝑎𝑖 = 𝑥 и 𝑎𝑗 = 0, уз додатни услов 𝑖 < 𝑗, тј. 0 се мора наћи после 𝑥.
Ако бисмо исписали на папир све парове, свако 𝑥 би се појавило на папиру онолико пута колико
иза њега има нула, па укупан број парова можемо да добијемо тако што за свако 𝑥 на неки збир
додамо број нула који се налази иза њега. Ово можемо урадити у једном пролазу кроз низ од
краја ка почетку. Док пролазимо кроз низ бројимо колико пута се појављује 0, а кад наиђемо на
𝑥, на неки збир додамо број нула који смо до тог тренутка пребројали.
Пошто укупан број парова може бити врло велики (у теорији 𝑛⋅(𝑛+1)/2) потребно је за бројање
парова користити тип long long.

#include <iostream>
#include <vector>

using namespace std;

int main() {
int n, x;
cin >> n >> x;

vector<int> a(n + 1);
for(int i = 1; i <= n; i++) cin >> a[i];

long long resenje = 0;
int brojNula = 0;

for(int i = n - 1; i >= 0; i--) {
if(a[i] == x) resenje += brojNula;
if(a[i] == 0) brojNula++;

}
cout << resenje;

}

Задатак: Највећа комбинација

Аутор: Андреј Павловић

Дато је низ 𝐴 од 𝑁 бројева мањих од 1018. Потребно их је спојити у један број тако да тај број
буде највећи могући. Под спајањем се сматра надовезивање бројева без мењања поретка цифара
у сваком од бројева.

Опис улаза

Уноси се број 𝑁 ≤ 105 и низ 𝐴 од 𝑁 бројева. Важи да је 1 ≤ 𝐴𝑖 ≤ 1018 за све 1 ≤ 𝑖 ≤ 𝑁 .

Опис излаза

Један број - највећи број који се добија спајањем низа бројева у један велики број.

Ограничења- 1 ≤ 𝑁 ≤ 105 - 1 ≤ 𝐴𝑖 ≤ 1018

Тест примери су подељени у три групe:

24 ГЛАВА 1. 1. КРУГ КВАЛИФИКАЦИЈА

• у тест примерима вредним 10 поена важи: 𝑁 ≤ 3;
• у тест примерима вредним 30 поена важи: 𝑁 ≤ 10;
• у тест примерима вредним 60 поена нема додатних ограничења.

Пример 1
Улаз
2
190 19

Излаз
19190

Пример 2
Улаз
3
15 12 9

Излаз
91512

Решење

Опис главног решења

Бројеве је згодно посматрати као ниске, јер се под „спајањем” подразумева надовезивање њихо-
вих цифара. Зато сваки број претварамо у ниску и затим одређујемо њихов најбољи редослед.

За два броја представљена као ниске x и y, разматрамо две могућности: да прво стоји x, па y, или
обрнуто. Упоређујемо ниске x + y и y + x, где знак + означава конкатенацију (надовезивање
ниски). Ако је x + y лексикографски веће од y + x, онда је боље да x стоји испред y.

На основу овог правила сортирамо све ниске, а затим их редом надовежемо. Тако добијамо један
велики број који је највећи могући број који се може добити спајањем датих бројева.

#include <bits/stdc++.h>
using namespace std;

bool comparator(string x, string y) {
return x + y > y + x;

}

int32_t main () {
ios::sync_with_stdio(false), cin.tie(0);

int N;
cin >> N;
vector<long long> A(N);
vector<string> S(N);
for (int i = 0; i < N; i++) {

cin >> A[i];
S[i] = to_string(A[i]);

}
sort(S.begin(), S.end(), comparator);
string ans = "";
for (int i = 0; i < N; i++)

ans += S[i];
cout << ans << '\n';

return 0;
}

Глава 2

2. круг квалификација

Задатак: Гринготс

Аутор: Душан Попадић

У магијском свету Харија Потера се за плаћање користе галеони, сикли и кнути. Један галеон
има 17 сикла, а један сикл 29 кнута. Рон има код себе 𝑎 галеона, 𝑏 сикла и 𝑐 кнута и жели да
их раситни тако да има само кнуте. Он одлази у чаробњачку банку Гринготс и тамо раситњава
новац. Колико Рон има кнута након раситњавања?

Опис улаза

У првом реду стандардног улаза се налази број 𝑎 (0 ≤ 𝑎 ≤ 100). У другом реду стандардног
улаза се налази број 𝑏 (0 ≤ 𝑏 ≤ 100). У трећем реду стандардног улаза се налази број 𝑐 (0 ≤
𝑐 ≤ 100).
Опис излаза

У једином реду стандардног излаза исписати колико ће Рон имати кнута након уситњавања.

Пример 1
Улаз
5
26
30

Излаз
3249

Објашњење
Након уситњавања када све галеоне и сикле претвори у кнуте, Рон ће имати
3249 кнута.

Пример 2
Улаз
0
1
1

Излаз
30

Решење

Опис главног решења

Потребно је све износе свести на кнуте. Један галеон вреди 17 ⋅ 29 кнута, а један сикл 29 кнута,
па укупан број кнута добијамо као

25

26 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

𝑎 ⋅ 17 ⋅ 29 + 𝑏 ⋅ 29 + 𝑐. Ова вредност се директно израчуна и испише као резултат.
#include <iostream>

using namespace std;

int main() {

int a, b, c;
cin >> a >> b >> c;
cout << a * 17 * 29 + b * 29 + c;

return 0;
}

Задатак: Путовање

Четворо другара Марина, Нађа, Влад и Петар отишли су на тродневно путовање заједно. Сваки
дан они су сели у неки кафић и попили сви по једно исто пиће. Договорили су се да ће сваки
дан неко други платити рачун за све, а да ће трошкове поделити на крају путовања. Како не воли
много да плаћа, Влад није ни један дан платио рачун у кафићу за све другаре. Због тога, остали
међу собом збијају шале на Владов рачун. Како би могли више шала да направе, занима их коме
од њих Влад дугује највише. Помозите им у томе.

Опис улаза

У првом реду стандардног улаза налази се један позитиван реалан број – износ рачуна који је
платила Марина. У другом реду стандардног улаза налази се један позитиван реалан број – износ
рачуна који је платила Нађа. У трећем реду стандардног улаза налази се један позитиван реалан
број – износ рачуна који је платио Петар. Ниједан од ових бројева није већи од 100 и сви су
различити.

Опис излаза

У једином реду стандардног излаза исписати прво слово имена другара коме Влад дугује највише
новца (M, N или P).

Пример 1
Улаз
10.92
14.32
13.75

Излаз
N

Пример 2
Улаз
18.5
12.45
17.8

Излаз
M

Решење

Опис главног решења

Како у сваком кафићу сви другари пију иста пића, Влад дугује свакоме по четвртину износа
рачуна. Самим тим, Влад дугује највише оном другару који је платио највећи износ рачуна.

#include <iostream>

int main()

27

{
double marina, nadja, nikola;
std::cin >> marina >> nadja >> nikola;
if(marina > nadja && marina > nikola)
std::cout << "M" << std::endl;

else if(nadja > nikola && nadja > marina)
std::cout << "N" << std::endl;

else
std::cout << "P" << std::endl;

return 0;
}

Задатак: Приближан рачун

Аутор: Милан Вугделија

Ана жели да брзо процени вредност ствари које је ставила у колица за куповину. Она не сабира
тачне цене, већ вредности заокругљене на најближу стотину. У случају неједнозначности (ако
су две стотине једнако близу), Ана заокругљује цену на вишу стотину. Написати програм који
учитава број купљених ствари 𝑛 и цене тих ствари, а исписује тачан збир и збир који је добила
Ана својим поступком.

Опис улаза

У првом реду стандардног улаза је природан број 𝑛, не већи од 20. У другом реду је 𝑛 природних
бројева, не већих од 10000, раздвојених по једним размаком.

Опис излаза

На стандардни излаз исписати само два цела броја, сваки у посебном реду. Први број је тачна
укупна вредност ствари у колицима, а други број је приближан збир који је Ана добила.

Пример 1
Улаз
5
189 34 450 999 300

Излаз
1972
2000

Објашњење
Тачан збир је: 189 + 34 + 450 + 999 + 300 = 1972. Ана је
сабирала редом: 200 (уместо 189) + 0 (34) + 500 (450) +
1000 (999) + 300 (300) = 2000.

Пример 2
Улаз
3
249 349 199

Излаз
797
700

Решење

Кључни део решења је формула по којој се израчунава приближна вредност 𝑦 дате ствари, ако је
њена цена 𝑥. Заокругљивање на ближу стотину може да се изведе додавањем 50 на цену, а затим
заокругљивањем на нижу стотину.

𝑦 = ⌊𝑥 + 50
100 ⌋ ⋅ 100

28 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

При томе, у случају да се цена завршава на 50 и једнако је удаљена од више и ниже стотине,
на овај начин добијамо цену заокругљену на вишу стотину, као што се и тражи. На пример, за
𝑥 = 150 добијамо

𝑦 = ⌊150 + 50
100 ⌋ ⋅ 100 = ⌊2⌋ ⋅ 100 = 2 ⋅ 100 = 200.

Остаје само да се ова формула примени на сваку ствар из колица и да се добијене вредности
саберу.

#include <iostream>

using namespace std;

int main() {
int n, zbir = 0, priblizno = 0, cena;
cin >> n;

for (int i = 0; i < n; i++)
{

cin >> cena;
zbir += cena;
priblizno += (cena + 50) / 100 * 100;

}
cout << zbir << endl;
cout << priblizno << endl;
return 0;

}

Задатак: Добри парови

Аутор: Огњен Тешић

Дат је цео број 𝑛. Исписати све парове бројева (𝑖, 𝑗) за које важи 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, 𝑖 > 𝑗 и
𝑖 + 𝑗 је дељив са 3.

Опис улаза

Са стандардног улаза се учитава цео број 𝑛 (1 ≤ 𝑛 ≤ 200).

Опис излаза

Исписати све парове (𝑖, 𝑗) који задовољавају услове. Сваки пар исписати у посебном реду, тако
да се најпре испише број 𝑖, а затим број 𝑗. Редослед редова у излазу није битан. Ако нема ниједног
пара, исписати −1.

29

Пример
Улаз
6

Излаз
2 1
4 2
5 1
5 4
6 3

Решење

Опис главног решења

Најпре примећујемо да су ограничења мала (𝑛 ≤ 200), па можемо без проблема да испитамо
све могуће парове бројева (𝑖, 𝑗). Уведимо логичку променљиву ima_par коју иницијално поста-
вљамо на false. Она ће нам служити да запамтимо да ли је током рада програма пронађен бар
један пар који задовољава услове задатка.

Затим користимо две угнежђене петље. Спољашња петља пролази кроз све вредности броја 𝑖 од
1 до 𝑛, док унутрашња петља пролази кроз све вредности броја 𝑗 од 1 до 𝑖 − 1. На овај начин
аутоматски обезбеђујемо услов 𝑖 > 𝑗, па нема потребе да га додатно проверавамо.
Унутар унутрашње петље проверавамо да ли је збир 𝑖 + 𝑗 дељив са 3, односно да ли важи услов
(𝑖 + 𝑗) mod 3 = 0. Ако је услов испуњен, пар (𝑖, 𝑗) одмах исписујемо у излаз и постављамо
променљиву ima_par на true, чиме бележимо да је пронађен бар један одговарајући пар.

Након што се све могуће комбинације бројева 𝑖 и 𝑗 обраде, проверавамо вредност променљиве
ima_par. Уколико ниједан пар није пронађен, односно ако је ima_par остала false, на излаз
исписујемо број −1.
Редослед у коме се парови исписују није битан, па је исправно исписивати их у тренутку када се
пронађу.

#include <iostream>
using namespace std;

int main() {
int n;
cin >> n;

bool ima_par = false;

for (int i = 1; i <= n; i++) {
for (int j = 1; j < i; j++) {

if ((i + j) % 3 == 0) {
cout << i << " " << j << '\n';
ima_par = true;

}
}

}

if (!ima_par) {
cout << -1 << '\n';

30 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

}

return 0;
}

Задатак: Цензура

Аутор: Љубомир Бановић

Влада Републике Рохан је суочена са проблемом - огромном заступљеношћу недозвољених речи
у новинама. Зато вас премијер моли да напишете програм који ће цензурисати неприкладна слова
у датој речи, тако што ће свако недозвољено слово заменити симболом '#'.

Опис улаза

У првом реду стандардног улаза се налазе два цела броја 𝑛 и 𝑘 (1 ≤ 𝑛 ≤ 104, 1 ≤ 𝑘 ≤ 26)-
дужина речи и број неприкладних слова.

У другом реду стандардног улаза се налази ниска дужине 𝑛, састављена од малих слова енглеске
абецеде - реч коју је потребно цензурисати.

У трећем реду стандардног улаза се налази 𝑘 различитих малих слова енглеске абецеде - непри-
кладна слова.

Опис излаза

У првом реду стандардног излаза исписати једну ниску - цензурисану реч.

Пример 1
Улаз
8 3
abcdefgh
c f h

Излаз
ab#de#g#

Пример 2
Улаз
5 1
aaaaa
b

Излаз
aaaaa

Решење

Опис главног решења

Најпре се учитава реч коју је потребно цензурисати, као и скуп неприкладних слова. Неприклад-
на слова се смештају у скуп. Затим се пролази кроз сваки карактер речи и, уколико се он налази
у скупу недозвољених слова, исписује се знак #, а у супротном се исписује оригинално слово.

#include <bits/stdc++.h>

using namespace std;

int main() {
ios::sync_with_stdio(0);
cin.tie(0);

int n, k;
cin >> n >> k;
string s;
cin >> s;

31

set<char> slova;
for(int i = 0; i < k; ++i) {

char x;
cin >> x;
slova.insert(x);

}

for(auto c : s) {
cout << (slova.count(c) ? '#' : c);

}

cout << '\n';

return 0;
}

Задатак: Ширење тајне

Аутор: Теодора Обрадовић

Милан много воли да шири туђе тајне у школи. Јутрос је пре часова сазнао једну веома важну
тајну и жели да сви сазнају за њу. Одлучио је да свима каже тајну у току часа. На часу сви ученици
седе у једном реду. Милан ће да каже тајну ученику лево од себе(ако постоји) и ученику десно
од себе (ако постоји). Затим ће ученик који седи лево од њега да каже ученику који седи још
једно место у лево, а ученик који седи десно од њега ће рећи ученику који седи још једно место
у десно. Ово ће се понављати све док се тајна не прошири до крајева реда. Међутим, постоје
ученици који прате час и које не занимају туђе тајне. Они неће даље ширити тајну (иако можда
не седе на крају реда).

Наставници се не свиђашто ученици причају на часу, па је направила неколико распореда седења.
У свим распоредима седења ученици који прате наставу седе на истим местима, јер они не праве
буку и њих не мора да премешта. Одредите колико ученика ће да сазна тајну за сваки распоред
седења ако је познато где је наставница рекла Милану да седи.

Опис улаза

Прва линија стандардног улаза садржи природан број 𝑛 ⩽ 109 који представља укупан број
ученика.

Друга линија стандардног улаза садржи природан број 𝑚 (𝑚 ⩽ 𝑛 и 𝑚 ⩽ 105) који представља
број ученика који прате наставу.

У трећој линији стандардног улаза уноси се 𝑚 бројева између 1 и 𝑛 - редни бројеви места где
седе ученици који прате наставу.

У четвртој линији стандардног улаза уноси се број 𝑟 ⩽ 105 - број распореда који је смислила
наставница.

У наредних 𝑟 линија стандардног улаза уноси се број између 1 и 𝑛 - редни број места где у
распореду седи Милан. Гарантује се да на овом месту не седи ученик који прати наставу из друге
линије улаза.

32 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

Опис излаза

На стандардни излаз у 𝑟 редова исписати колико ученика је сазнало тајну.
Подзадаци

• 𝑛 ⩽ 1000 и 𝑟 ⩽ 1000 - 20 поена;
• 𝑚 ⩽ 1000 и 𝑟 ⩽ 1000 - 40 поена;
• без додатних ограничења - 40 поена.

Пример 1
Улаз
10
3
1 4 7
2
2
9

Излаз
2
3

Објашњење
У првом распореду седења за тајну ће сазнати ученици који седе на ме-
стима 2 и 3. Ученици 1 и 4 прате на часу и неће даље ширити ову тајну.
У другом распореду седења ученици 8,9 и 10 ће сазнати за тајну. Ученик
7 прати на часу, а ученик 10 седи на крају реда и нема коме другом да је
каже.

Пример 2
Улаз
1000
3
100 255 932
2
400
934

Излаз
676
68

Објашњење
У првом распореду седења за тајну ће сазнати ученици који седе на
местима која имају редне бројеве од 256 до 931 (укључујући та два).
Ученици 255 и 932 прате на часу и неће даље ширити ову тајну. У
другом распореду седења ученици који седе лево од ученика 932 ће
сазнати за тајну. Ученик 932 прати на часу, а ученик 1000 седи на
крају реда и нема коме другом да је каже.

Решење

Опис решења првог подзадатка

Када су и 𝑛 и 𝑟 мањи или једнаки 1000, задатак се може решити грубом силом. Довољно је
да сваки пут симулирамо ширење тајне почевши од Милановог места и избројимо до колико
ученика је стигла тајна.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main()
{

int n,m;
cin>>n>>m;
vector<bool> prate(n+1);
int i,p;
for(i=1;i<=n;i++){

prate[i]=false;
}
for(i=0;i<m;i++){

cin>>p;

33

prate[p]=true;
}
int r,milan,res;
cin>>r;
while(r>0){

cin>>milan;
res=1;
i=milan;
while(i>1 && !prate[i-1]){

res+=1;
i--;

}
i=milan;
while(i<n && !prate[i+1]){

res+=1;
i++;

}
cout<<res<<endl;
r--;

}
return 0;

}

Опис решења другог подзадатка

Применом грубе силе решење неће да се изврши довољно брзо, због тога што је 𝑛 веома велики
број. Међутим, када су и 𝑚 и 𝑟 мањи или једнаки 1000, задатак се може решити на следећи
начин: Приметимо да ће тајну да сазнају сви ученици између краја реда и неког ученика који
прати наставу или два ученика који прате наставу. То је исто као да на позицијама 0 и 𝑛 + 1
седе још два ученика који прате наставу и да тајну сазнају сви који седе између два ученика који
прате наставу, а између којих седи Милан. Када се низ свих ученика који прате сортира (и када
му се додају нова два члана на крајевима реда) ученици који ће сазнати тајну су они који седе
између два узастопна члана низа. Ова два члана низа се могу наћи грубом силом.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main()
{

int n,m;
cin>>n>>m;
vector<int> prate(m+2);
int i;
prate[0]=0;
for(i=1;i<=m;i++){

cin>>prate[i];
}

34 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

prate[m+1]=n+1;
sort(prate.begin(),prate.end());
int r,milan,veci;
cin>>r;
while(r>0){

cin>>milan;
veci=0;
while(prate[veci]<milan){

veci++;
}
cout<<(prate[veci]-prate[veci-1]-1)<<endl;
r--;

}
return 0;

}

Опис главног решења

Решење које ће да ради за све тест примере је веома слично решењу другог подзадатка. Једина
разлика је у томе што се узастопни чланови у низу ученика који слушају наставу не тражи грубом
силом, већ бинарном претрагом. Потребно је наћи највећи члан низа који седи на месту мањем
од Милановог. Следећи члан низа ће сигурно да има веће место од Милановог, па је потребно
одузети та два члана и одузети још један.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main()
{

int n,m;
cin>>n>>m;
vector<int> prate(m+2);
int i;
prate[0]=0;
for(i=1;i<=m;i++){

cin>>prate[i];
}
prate[m+1]=n+1;
sort(prate.begin(),prate.end());
int r,l,d,s,milan;
cin>>r;
while(r>0){

cin>>milan;
l=0;
d=m+2;
while(l<d-1){

s=(l+d)/2;

35

if(prate[s]<=milan){
l=s;

}
else{

d=s;
}

}
cout<<(prate[l+1]-prate[l]-1)<<endl;
r--;

}
return 0;

}

Задатак: Хари Потер

Аутор: Душан Попадић

У магијском свету Харија Потера се за плаћање користе галеони, сикли и кнути. Један галеон
има 17 сикла, а један сикл 29 кнута. Рон има код себе 𝑛 кнута и жели да их укрупни што је више
могуће (тако да има што је више могуће галеона, па од остатка што је више могуће сикла и што
мање преосталих кнута). Колико ће Рон имати галеона, сикла и кнута након укрупњавања?

Опис улаза

У једином реду стандардног улаза се налази број 𝑛 (0 ≤ 𝑛 ≤ 5000).
Опис излаза

У једином реду стандардног излаза исписати три броја - колико ће Рон имати галеона, сикла и
кнута након укрупњавања.

Пример 1
Улаз
1249

Излаз
2 9 2

Објашњење
Рон жели да има што више галеона, што је у овом случају 2. Када кнуте
претвори у 2 галеона, од остатка жели да што више претвори у сикле и
добија 9 сикла. Остаје му 2 кнута. Провера решења: два галеона је 986
кнута, 9 сикла је 261 кнут. Када се сабере 986+231+2 добије се 1249 што
је почетни број кнута.

Пример 2
Улаз
65

Излаз
0 2 7

Решење

Опис главног решења

Потребно је кнуте укрупњавати редом, почевши од галеона. Најпре се израчуна максималан број
галеона као 𝑔 = ⌊ 𝑛

17⋅29⌋, а затим се преостали кнути рачунају као остатак при том дељењу. Од
преосталих кнута се на исти начин одређује максималан број сикла дељењем са 29, док остатак
након тога представља број преосталих кнута. На крају се исписују бројеви галеона, сикла и
кнута.

36 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

#include <iostream>

using namespace std;

int main() {

int n;
cin >> n;

int g = n / (17*29);
n = n % (17*29);
int s = n / 29;
n = n % 29;
int k = n;

cout << g << " " << s << " " << k;
return 0;

}

Задатак: Квазинаучник

Аутор: Милан Вугделија

Ћира веома жели да постане научник. Да би стекао жељено звање и признање, смислио је ори-
гиналну теорију и експеримент којим ће ту теорију да потврди. Експеримент је такав, да се при
сваком његовом извођењу као резултат увек добија један од бројева 1, 2, 3, … , 𝑛. Према Ћири-
ној теорији, када се експреримент изведе велики број пута, резултати 1 и 𝑛 треба да се добију
приближно исти број пута. Резултати 2 и 𝑛 − 1 такође треба да се појаве приближно исти број
пута, као и резултати 3 и 𝑛 − 2, итд.
Нажалост, Ћирини резултати се прилично разликују од оних које предвиђа његова теорија. Уме-
сто да размисли о разлозима неслагања (што би урадио прави научник), Ћира је одлучио да буде
непоштен и да нека извођења експеримента не пријави, односно да у извештају за неке резултате
пријави мањи број појављивања од оног који је стварно добио. Ћира је сакрио најмањи могућ
број претходно изведених експеримената, тако да добије идеално слагање броја појављивања
резултата 1 и 𝑛, резултата 2 и 𝑛 − 1 итд. Другим речима, пријављени низ броја појављивања
сваког резултата чита се исто слева надесно и здесна налево.

Написати програм који за дате бројеве појављивања резултата које је Ћира добио извођењем
експеримента израчунава укупан број извођења експреримента које је Ћира прећутао, као и
бројеве пријављених појављивања појединих резултата.

Опис улаза

Упрвом реду стандардног улаза је цео број𝑛 (1 ≤ 𝑛 ≤ 1000), највећи број који може да се добије
као резултат приликом извођења експеримента. У другом реду је 𝑛 неозначених целих бројева,
мањих од 1000, раздвојених по једним размаком, при чему 𝑖-ти од тих бројева представља број
извођења експеримента у којима је добијен резултат 𝑖 (1 ≤ 𝑖 ≤ 𝑛).
Опис излаза

У први ред стандардног излаза исписати један цео број, укупан број прећутаних извођења ек-

37

сперимента. У други ред исписати 𝑛 целих бројева раздвојених по једним размаком, при чему
𝑖-ти од тих бројева треба да буде пријављени број извођења експеримента у којима је добијен
резултат 𝑖.
Пример 1
Улаз
3
5 2 7

Излаз
2
5 2 5

Објашњење
Из улазних података видимо да се у овом примеру као резултат извођења
Ћириног експеримента увек добија резултат 1, 2 или 3, као и да је Ћира
добио резултат 1 пет пута, резултат 2 два пута, а резултат 3 седам пута.
Да би добио резултат који се идеално слаже са његовом теоријом, Ћира је
прећутао 2 извођења експеримента при којима је добио резултат 3. Према
томе, Ћира је пријавио да се резултат 1 појавио пет пута, резултат 2 два
пута, а резултат 3 пет пута.

Пример 2
Улаз
6
4 7 5 6 8 2

Излаз
4
2 7 5 5 7 2

Објашњење
Ћира је прећутао укупно 4 извођења експеримента, од тога
два извођења са резултатом 1 (од 4 извођења пријавио је са-
мо 2), једно са резултатом 4 (од 6 извођења пријавио је 5) и
једно са резултатим 5 (од 8 извођења пријавио је 7).

Решење

Опис главног решења

Нека се резултат 1 појавио 𝑃1 пута, а резултат 𝑛 𝑃𝑛 пута. Пошто је Ћира сакрио најмањи могућ
број претходно изведених експеримената тако да добије идеално слагање, закључујемо следеће:

• ако је 𝑃1 < 𝑃𝑛, Ћира је сакрио 𝑃𝑛 − 𝑃1 извођења са резултатом 𝑛,
• ако је 𝑃1 > 𝑃𝑛, Ћира је сакрио 𝑃1 − 𝑃𝑛 извођења са резултатом 1,
• ако је 𝑃1 = 𝑃𝑛, Ћира од ових извођења није сакрио ништа.

Исто важи за све остале парове резултата, за које је збир резултата једнак 𝑛 + 1.
Према томе, за сваки пар резултата 𝐿, 𝐷, таквих да је 𝐿 + 𝐷 = 𝑛 + 1, треба бројати (додати на
бројачку променљиву) |𝑃𝐿 −𝑃𝐷| сакривених резултата и већу од вредности 𝑃𝐿, 𝑃𝐷 из учитаног
низа променити тако да буде једнака мањој.

На крају треба приказати број прећутаних извођења експеримента и измењени низ. Наравно, у
програму су сви индекси умањени за 1, јер је индекс почетног елемента 0, а не 1.

#include <iostream>
#include <vector>

using namespace std;

int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++)

cin >> a[i];

38 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

int levo = 0, desno = n-1, brSakrivenih = 0;
while(levo < desno)
{

brSakrivenih += abs(a[levo] - a[desno]);
if (a[levo] < a[desno]) a[desno] = a[levo];
else a[levo] = a[desno];
levo++; desno--;

}
cout << brSakrivenih << endl;
for (int i = 0; i < n; i++)

cout << a[i] << " ";

cout << endl;
return 0;

}

Задатак: Да ли постоји правоугаоник

Да ли постоји правоугаоник са целобројним страницама чија је површина једнака 𝑃 , а обим
једнак 𝑂?
Опис улаза

Један ред садржи два цела броја 𝑃 и 𝑂 (1 ≤ 𝑃 ≤ 1012, 2 ≤ 𝑂 ≤ 4 ⋅ 1012). Гарантује се да је 𝑂
паран број.

Додатна ограничења- У 50% тест примера ће важити 1 ≤ 𝑃 ≤ 106 и 2 ≤ 𝑂 ≤ 4 ⋅ 106.

Опис излаза

Ако решење не постоји, исписати -1.
Иначе исписати два броја 𝑎 и 𝑏 (𝑎 ≤ 𝑏) - димензије правоугаоника.
Пример 1
Улаз
36 26

Излаз
4 9

Пример 2
Улаз
36 1000

Излаз
-1

Решење

Опис главног решења

Са стандардног улаза се учитавају два цела броја P и O, који представљају површину и обим
правоугаоника. Тражимо да ли постоје целобројне димензије правоугаоника a и b такве да важи:

• 𝑎 ⋅ 𝑏 = 𝑃 ;
• 2 ⋅ (𝑎 + 𝑏) = 𝑂.

Пошто је гарантовано да је𝑂 паран број, можемо да поделимо једначину за обим са 2 и добијамо
услов 𝑎 + 𝑏 = 𝑂/2.
Зато у програму прво израчунавамо zbir = O / 2. Сада проблем постаје: да ли постоји пар
делилаца броја P чији је збир једнак zbir.

39

Да бисмо то проверили, пролазимо кроз све позитивне делиоце delilac броја P до sqrt(P). За
сваки такав delilac који дели P, добијамо један кандидат-пар димензија:

• a = delilac;
• b = P / delilac.

Затим проверавамо да ли важи a + b == zbir. Ако важи, нашли смо правоугаоник који има
тражену површину и обим. Пошто треба исписати a <= b, по потреби заменимо вредности, са-
чувамо решење и прекидамо претрагу (јер је довољно наћи било које важеће решење).

Ако након испитивања свих делилаца не пронађемо ниједан пар који задовољава услов, онда
решење не постоји и исписујемо -1. У супротном, исписујемо пронађене димензије a и b.

Сложеност алгоритма је 𝒪(
√

𝑃), јер се пролази кроз све делиоце до корена броја 𝑃 . Просторна
сложеност је 𝒪(1), пошто се користи само константан број помоћних променљивих.

#include <iostream>
using namespace std;

int main() {
long long P, O;
cin >> P >> O;

long long zbir = O / 2; // ��� �� 2(a + b) = O

bool nasao = false;
long long resA = -1, resB = -1;

for (long long delilac = 1; delilac * delilac <= P; delilac++) {
if (P % delilac == 0) {

long long a = delilac;
long long b = P / delilac;
if (a + b == zbir) {

if (a > b) swap(a, b);
resA = a;
resB = b;
nasao = true;
break;

}
}

}

if (!nasao) {
cout << -1 << '\n';

} else {
cout << resA << ' ' << resB << '\n';

}

return 0;
}

40 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

Задатак: Сума свих поднизова

Аутор: Александар Николић

Дат је низ целих бројева 𝑎1, 𝑎2, … , 𝑎𝑛. Израчунати збир свих бројева из свих поднизова овог
низа.

Подниз низа је сваки низ који се може добити брисањем неколико (могуће нула) елемената са
почетка и неколико (могуће нула) елемената са краја датог низа.

На пример, за низ [1, 2, 3] поднизови су: [1], [2], [3], [1, 2], [2, 3], [1, 2, 3]. Збир свих њихових
елемената је 1 + 2 + 3 + 3 + 5 + 6 = 20.
Опис улаза

Први ред стандардног улаза садржи цео број 𝑛 - број чланова низа.

Други ред стандардног улаза садржи 𝑛 размаком раздвојених целих бројева 𝑎1, 𝑎2, … , 𝑎𝑛 - чла-
нови низа.

Опис излаза

Исписати један цео број - збир свих бројева из свих поднизова датог низа.

Ограничења

• 1 ≤ 𝑛 ≤ 200.000
• −100 ≤ 𝑎𝑖 ≤ 100

Тест примери су подељени у три групe:

• у тест примерима вредним 20 поена важи: 𝑛 ≤ 100;
• у тест примерима вредним 30 поена важи: 𝑛 ≤ 1000;
• у тест примерима вредним 50 поена нема додатних ограничења.

Пример
Улаз
3
1 2 3

Излаз
20

Решење

Опис главног решења

Дат је низ целих бројева a дужине n. Потребно је израчунати збир свих елемената свих поднизова
датог низа. Директно набрајање свих поднизова није изводљиво, јер их има 𝒪(𝑛2), па би такво
решење било пресporo за велика ограничења.

Зато посматрамо допринос сваког појединачног елемента укупном збиру. Фиксирамо позицију
i и елемент a[i]. Питање је у колико поднизова се овај елемент појављује.

Подниз је одређен избором почетне и крајње позиције. Да би a[i] био садржан у поднизу, поче-
так подниза може бити било која позиција од 1 до i, а крај подниза било која позиција од i до n.
Зато број поднизова који садрже елемент a[i] износи: - 𝑖 могућих избора за почетак, - 𝑛 − 𝑖 + 1
могућих избора за крај.

Укупно, елемент a[i] се појављује у 𝑖 ⋅ (𝑛 − 𝑖 + 1) поднизова, па његов укупни допринос збиру
износи: 𝑖 ⋅ (𝑛 − 𝑖 + 1) ⋅ 𝑎[𝑖].

41

Сабирањем овог доприноса за све позиције 𝑖 = 1, 2, … , 𝑛 добијамо тражени збир свих елемената
свих поднизова.

Временска сложеност алгоритма је 𝒪(𝑛), јер се низ обилази једном. Просторна сложеност је
𝒪(𝑛) за чување низа (или 𝒪(1) додатног простора ако се елементи обрађују током читања).
#include <bits/stdc++.h>

using namespace std;

int main() {
int n;
cin >> n;
vector<int> a(n + 1);
long long ans = 0;

for(int i = 1; i <= n; i++)
cin >> a[i];

for(int i = 1; i <= n; i++)
ans += 1ll * i * (n - i + 1) * a[i];

cout << ans;
return 0;

}

Задатак: Слагалица

Аутор: Огњен Тешић

У току је популарни телевизијски квиз Слагалица, тачније игра Ко зна зна, у којој такмичари
добијају питања једно за другим. Правила су следећа: - тачан одговор доноси 10 поена; - нетачан
одговор одузима 5 поена; - ако такмичар не одговори на постављено питање, број поена му остаје
непромењен.

После досадашњег тока игре, резултат је: - Први играч има 𝑎 поена; - Други играч има 𝑏 поена;
- важи да први играч води, тј. 𝑎 > 𝑏.
Питања се настављају. Одредити најмањи број наредних питања који морају да се одиграју
да би Други играч могао да има (строго) више поена од Првог играча, уз најповољнији могући
распоред тачних и нетачних одговора за оба такмичара.

Опис улаза

Једина линија улаза садржи два природна броја 𝑎 и 𝑏 - тренутни број поена Првог и Другог играча.
Гарантовано је да важи 𝑎 > 𝑏.
Опис излаза

Исписати један број - најмањи број наредних питања после којих Други играч може да има више
поена од Првог.

42 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

Пример 1
Улаз
14 7

Излаз
1

Објашњење
Објашњење: Други играч тачно одговори (+10), Први промаши или не од-
говори.

Пример 2
Улаз
50 0

Излаз
4

Објашњење
Објашњење: Разлика је 50. Једно питање може да промени однос за нај-
више 15 поена (+10 за Другог и −5 за Првог). Да би се надокнадило 50
поена, потребно је најмање 4 питања.

Пример 3
Улаз
62 2

Излаз
5

Решење

Опис главног решења

Најпре посматрамо разлику у поенима између играча, коју рачунамо као 𝑑 = 𝑎 − 𝑏.
Циљ је да одредимо најмањи број наредних питања након којих Други играч може да има строго
више поена од Првог.

У једном питању, у најповољнијем случају по Другог играча, може да се деси следеће: - Други
играч тачно одговори и добије +10 поена; - Први играч нетачно одговори и изгуби 5 поена.

У том случају, разлика у поенима се смањује за укупно 15 поена. Очигледно је да се у једном
питању не може надокнадити више од 15 поена разлике.

Зато тражимо најмањи број питања 𝑘 такав да након 𝑘 питања важи 15 ⋅ 𝑘 > 𝑑.
Овај услов решавамо тако што израчунамо горњи цео део количника 𝑑

15 , односно: 𝑘 = ⌈ 𝑑
15⌉.

У програму се то постиже формулом 𝑘 = 𝑑+15
15 , уз коришћење целобројног дељења.

Добијена вредност 𝑘 представља најмањи број наредних питања након којих Други играч може
да има више поена од Првог и она се исписује као коначан резултат.

#include <iostream>
using namespace std;

int main() {
int a, b;
cin >> a >> b;

int d = a - b; // a > b
int k = (d + 15) / 15; // gornji ceo deo od (d+1)/15

cout << k << endl;
return 0;

}

43

Задатак: Гумене бомбоне

Аутор: Милан Коцић

Отац је купио три кесе гумених бомбона, а тежина сваке кесе је позната. Има два детета и жели да
свако дете добије по две кесе тако да укупна тежина код оба детета буде иста. Да би то омогућио,
купује још једну кесу и жели да потроши најмање могуће новца. Одредити минималну тежину
четврте кесе која обезбеђује да се кесе могу распоредити у два пара једнаке укупне тежине.

Опис улаза

У првом реду стандардног улаза се налазе три природна броја (сваки између 130 и 250) који
представљају тежине три кеса бомбона.

Опис излаза

На стандардни излаз исписати један природан број - тежину четврте кесе бомбона.

Пример 1
Улаз
146 221 204

Излаз
129

Пример 2
Улаз
200 200 200

Излаз
200

Решење

Опис главног решења

Најпре уочавамо да у једном пару мора да се нађе најтежа постојећа кеса, јер ће она иначе одре-
дити већу укупну тежину. Да би оба пара имала исту тежину, збир преостале две постојеће кесе и
четврте кесе мора бити једнак тежини пара који садржи најтежу кесу два пута. Зато је минимал-
на тежина четврте кесе једнака разлици између збира све три кесе и двоструке тежине најтеже
кесе.

#include <iostream>
#include <algorithm>
using namespace std;

int main() {
int a, b, c;
cin >> a >> b >> c;
int najteza = max({a,b,c});
cout << a + b + c - 2 * najteza << endl;
return 0;

}

Задатак: Адвокатица

Софија је једна од најбољих адвокатица у Београду. Због тога много људи жели да буду њени
клијенти. Сваког дана одређени број људи затражи од Софије да их она заступа. Ипак, због тога
што је њен посао захтеван, она у једном тренутку може да заступа највише 𝐾 клијената, те
прихвата сваког дана онолико захтева колико може. Софија зна да предмет сваког клијента може
да реши за тачно𝐷 дана. Она жели да зна колико ће клијената заступати у наредних𝑁 дана како
би могла да испланира свој дуго очекивани одмор.

44 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

Опис улаза

У првом реду стандардног улаза налазе се природни бројеви 𝐾, 𝐷 и 𝑁 (1 ≤ 𝐾 ≤ 10, 1 ≤ 𝐷 ≤
𝑁 ≤ 100), редом највећи број клијената које у једном тренутку Софија може да заступа, број
дана потребан за решавање предмета једног клијента и број дана за које Софију занима колико
ће клијената заступати.

У другом реду стандардног улаза налази се 𝑁 природних бројева 𝑋𝑖 (1 ≤ 𝑋𝑖 ≤ 100), при чему
број 𝑋𝑖 представља број људи који су затражили да их Софија заступа.

Опис излаза

У једином реду стандардног излаза исписати један број који представља колико клијената ће
Софија заступати док не оде на одмор.

Пример 1
Улаз
3 2 7
1 0 1 2 3 0 4

Излаз
8

Објашњење
Софија прихвата једног клијента првог дана и тај предмет завр-
шава до краја другог дана. Трећег дана прихвата још једног кли-
јента чији предмет завршава до краја четвртог дана. Четвртог
дана прихвата још два клијента и њихове предмете завршава до
краја шестог дана. Петог дана Софија може да прихвати само
једног клијента, јер у том тренутку већ има два клијента која је
прихватила четвртог дана. Најзад, Софија прихвата три клијента
седмог дана. Укупно Софија заступа 8 клијената.

Пример 2
Улаз
3 3 10
4 3 5 2 6 3 9 8 1 2

Излаз
11

Решење

Опис главног решења

Приметимо да ако Софија неког дана активно ради на 𝑇 предмета, она ће тог дана преузети
min{𝐾 − 𝑇 , 𝑋𝑖} нових предмета. С једне стране, ако је 𝐾 − 𝑇 , односно број који представља
колико нових предмета би Софија могла да преузме, мањи од𝑋𝑖, она ће тог дана преузети нових
𝐾 − 𝑇 предмета. Са друге стране, ако јој се тог дана јави мање нових клијената него што би она
могла да преузме предмета (дакле,𝑋𝑖 < 𝐾 −𝑇), у том случају она преузима нових𝑋𝑖 предмета.

Приметимо и да ако Софија 𝑖-тог дана преузме 𝑌𝑖 нових предмета, дана 𝑖+𝐷 треба умањити њен
број активних предмета за 𝑌𝑖 пре него што се започне са одређивањем колико нових предмета
ће она преузети тог дана.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main()
{

int k, d, n;

45

cin >> k >> d >> n;
vector<int> x(n);
for(int i=0;i<n;i++)

cin >> x[i];
vector<int> y(n);
int res = 0;
int tr = 0;
for(int i=0;i<n;i++)
{

tr -= y[i];
int novi = min(k - tr, x[i]);
tr += novi;
res += novi;
if(i+d<n)

y[i+d] = novi;
}
cout << res << endl;

}

Задатак: Слатки поднизови

Дат је низ целих бројева 𝑎 дужине 𝑛. Рећи ћемо да је низ сладак ако се може поделити на више
узастопних делова (блокова), при чему сваки блок почиње бројем који означава његову дужину,
а одмах након њега следи тачно толико елемената тог блока.

На пример,

• [4, 2, 3, 5, 2, 1, 6] је сладак, јер прво стоји број 4 па затим 4 елемента блока, а после
њега блок дужине 1 са једним елементом;

• [2, 7, 4, 4, 2025, 2, 6, 1] је такође сладак.
С друге стране, низови попут [2], [1, 5, 3] или [3, 12, 1] немају тражену структуру и зато нису
слатки.

У једном потезу дозвољено је из низа обрисати било који елемент. Потребно је одредити најмањи
број брисања којима се дати низ може довести да буде сладак.

Опис улаза

Прва линија садржи један цео број 𝑛 (1 ≤ 𝑛 ≤ 2 ⋅ 105) - дужину низа 𝑎.
Друга линија садржи 𝑛 целих бројева 𝑎1, 𝑎2, … , 𝑎𝑛 (1 ≤ 𝑎𝑖 ≤ 106) - елементе низа 𝑎.
Додатна ограничењаТест примери су подељени у четири групе: - У тест примерима вредним 25
поена важи 𝑛 ≤ 15; - У тест примерима вредним 10 поена су сви чланови низа јединице; - У
тест примерима вредним 25 поена важи 𝑛 ≤ 1000; - У тест примерима вредним 40 поена нема
додатних ограничења.

Опис излаза

Исписати један цео број - минималан број брисања потребан да дати низ постане сладак.

46 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

Пример 1
Улаз
5
1 2 3 4 5

Излаз
2

Објашњење
Објашњење. Ако се обришу први и последњи елемент, остаје [2, 3, 4],
што одговара блоку дужине 2, па је низ сладак.

Пример 2
Улаз
8
2 7 4 4 2025 2 6 1

Излаз
0

Објашњење
Објашњење. Дати низ се налази у поставци и већ је сладак,
па није потребна ниједна операција.

Пример 3
Улаз
5
1 2 3 1 2

Излаз
1

Објашњење
Објашњење. Дати низ није сладак, а брисањем средњег члана остаје
[1, 2, 1, 2], те је одговор 1.

Решење

Опис главног решења

Посматрамо низ arr дужине n. Желимо да обришемо најмањи број елемената тако да преостали
елементи (у истом редоследу) формирају сладак низ, тј. да се могу поделити на блокове облика:

• прво стоји број L (дужина блока),
• одмах затим следи тачно L елемената тог блока.

Задатак решавамо динамичким програмирањем над позицијама.

Нека је dp[i] минималан број брисања који је потребан да бисмо од подниза који почиње на
позицији i (од arr[i] до краја) могли да добијемо сладак низ.

Тада на позицији i имамо две природне могућности:

1. Обришемо елемент arr[i].
Тада прелазимо на позицију i+1, а број брисања се увећава за 1, па је
a = dp[i+1] + 1.

2. Задржимо arr[i] као дужину првог блока.
Ако је arr[i] = L, онда блок мора да заузме тачно 1 + L елемената: један је сама дужина,
а после њега иде L елемената блока.
То значи да после тог блока следећи блок (ако постоји) почиње на позицији
i + L + 1.

Ако можемо да „скочимо” на ту позицију, онда је цена ове опције
b = dp[i + L + 1].

Међутим:

• ако је i + L + 1 == n, онда смо тачно стигли до краја и цена је 0 (све се лепо за-
вршило на крају низа);

• ако је i + L + 1 > n, онда не можемо формирати блок те дужине јер нема довољно
елемената, па ову опцију проглашавамо невалидном.

Да бисмо ово једноставно имплементирали, функција getDP(pos, n, dp) враћа: - 0 ако је pos
== n (тачно крај), - невалидну велику вредност n+1 ако је pos > n, - иначе dp[pos].

47

Зато за свако i важи прелаз:
dp[i] = min(dp[i+1] + 1, getDP(i + arr[i] + 1, n, dp)).

Базни случајеви: - Ако смо на крају (i == n), нема више шта да се поправља: dp[n] = 0. - За i
= n-1 (један елемент до краја), једини начин да буде сладак је да га обришемо, па је dp[n-1]
= 1.

DP попуњавамо уназад (од n-2 до 0), јер dp[i] зависи од већ израчунатих вредности dp[i+1]
и dp[i + arr[i] + 1].

Коначан одговор је dp[0], јер он представља минималан број брисања потребан да цео низ по-
стане сладак.

Временска сложеност алгоритма је𝒪(𝑛), јер се свака позиција низа обрађује тачно једном, а сва-
ки прелаз се извршава у константном времену. Просторна сложеност је 𝒪(𝑛), због коришћења
низа dp дужине n+1.

#include <bits/stdc++.h>
using namespace std;

int getDP(int pos, int n, vector<int>& dp) {
if (pos > n) return n + 1;
if (pos == n) return 0;
return dp[pos];

}

void solve(int n, vector<int> arr) {
vector<int> dp(n + 1, n + 1);

dp[n - 1] = 1;

for (int i = n - 2; i >= 0; i--) {
int a = dp[i + 1] + 1;
int b = getDP(i + arr[i] + 1, n, dp);
dp[i] = min(a, b);

}

cout << dp[0] << endl;
}

int main() {
int n;
cin >> n;

vector<int> arr(n);
for (int i = 0; i < n; i++) {

cin >> arr[i];
}

solve(n, arr);
return 0;

48 ГЛАВА 2. 2. КРУГ КВАЛИФИКАЦИЈА

}

Глава 3

Општинско такмичење

Задатак: Буџет за летовање

Аутори: Ђура Пађан, Филип Марић

Породица Јовановић планира трошкове свог летовања. За превоз ће платити износ од𝑃 динара у
сваком смеру. На летовању ће остати 𝑛 дана. Смештај и храну ће сваки дан плаћати по 𝑆 динара.
Напиши програм који одређује колико новца ће породица Јовановић потрошити на летовању.

Опис улаза

Са стандардног улаза се уноси природан број 𝑃 (1000 ≤ 𝑃 ≤ 20000), затим број дана 𝑛 (3 ≤
𝑛 ≤ 15) и природан број 𝑆 (1000 ≤ 𝑆 ≤ 20000). Сваки број се уноси у посебном реду.
Опис излаза

На стадардни излаз исписати укупне трошкове летовања.

Пример
Улаз
5000
7
3000

Излаз
31000

Објашњење
Укупни трошкови су трошкови пута (10000) и трошкови боравка (21000)
што је укупно 31000.

Решење

Пошто се плаћа по 𝑃 данара за сваки смер путовања, укупни трошкови превоза су 2 ⋅ 𝑃 . За
смештај и храну ће платити 𝑛 ⋅ 𝑆. Стога ће укупни трошкови бити 2 ⋅ 𝑃 + 𝑛 ⋅ 𝑆.
#include <iostream>

using namespace std;

int main() {
int P, n, S;
cin >> P >> n >> S;
cout << 2*P + n*S << endl;

49

50 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

return 0;
}

Задатак: Упоредити цифре

Аутор: Огњен Тешић

Дат је један четвороцифрен број.

Средње цифре четвороцифреног броја су цифра стотина и цифра десетица.
Потребно је упоредити те две цифре.

• ако је цифра стотина већа од цифре десетица, исписати знак >
• ако је мања, исписати знак <
• ако су једнаке, исписати знак =

Опис улаза

Са стандардног улаза се учитава један четвороцифрен број.

Опис излаза

На стандардни излаз исписати један од знакова
>, < или = у зависности од поређења средњих цифара.

Пример 1
Улаз
5834

Излаз
>

Објашњење
Цифра стотина је 8, а цифра десетица је 3. Пошто је 8 веће од 3 исписујемо
>.

Пример 2
Улаз
2447

Излаз
=

Пример 3
Улаз
3192

Излаз
<

Решење

Главно питање у овом задатку је како из четвороцифреног броја издвојити цифре десетица и
стотина. Да бисмо то урадили потребно је прво приметити да када број поделимо са 10 (користе-
ћи целобројно дељење) практично бришемо његову последњу цифру (на пример 2645 постаје
264), а када одредимо остатак при дељењу са 10 добијамо последњу цифру (2645 даје остатак 5
при дељењу са 10).

Да бисмо издвојили цифру десетица (другу са десна) потребно је да прво “обришемо” последњу
цифру дељењем са 10 и онда издвојимо нову последњу цифру одређивањем остатка при дељењу
са 10. Дакле цифру десетица добијамо као (𝑛/10).
Да бисмо издвојили цифру стотина (трећу са десна) потребно је да прво “обришемо” последње
две цифре тако што два пута поделимо са 10 (тј. једном са 100) и онда издвојимо нову последњу
цифру одређивањем остатка при дељењу са 10. Дакле цифру десетица добијамо као (𝑛/100).
#include <iostream>
using namespace std;

int main() {
int n;

51

cin >> n;

int stotine = (n / 100) % 10;
int desetice = (n / 10) % 10;

if (stotine > desetice)
cout << ">";

else if (stotine < desetice)
cout << "<";

else
cout << "=";

return 0;
}

Задатак: Дељивост са 3 7 21

• Аутори: Ђура Пађан, Филип Марић *

Број 14 је дељив са 7, али не и са 3, број 15 је дељив са 3, али не и са 7, док је број 42 дељив и
са 3 и са 7 (па је зато дељив и са 21). Напиши програм који испитује дељивост унетог броја са 3,
7 и 21.

Опис улаза

Са стандардног улаза се уноси природан број 𝑛 (1 ≤ 𝑛 ≤ 1 000 000).
Опис излаза

На стандардни излаз исписати:

• 3 ако је број дељив са 3, али не и са 7.
• 7 ако је број дељив са 7, али не и са 3.
• 21 ако је број дељив са 21,
• - ако број није дељив ни са 3 ни са 7.

Пример 1
Улаз
14

Излаз
7

Пример 2
Улаз
15

Излаз
3

Пример 3
Улаз
16

Излаз
-

Пример 4
Улаз
63

Излаз
21

Решење

Прво можемо проверити да ли је број дељив са 21 (израчунавањем остатка при дељењу и прове-
ром да ли је тај остатак 0). Ако јесте, исписујемо 21. Ако није дељив са 21, проверавамо да ли
је дељив са 7. Ако јесте, исписујемо 7. У супротном проверавамо да ли је дељив са 3. Ако јесте,
исписујемо 3. У супротном знамо да број није дељив ни са 7 ни са 3, па исписујемо -.

#include <iostream>

using namespace std;

int main() {
int n;

52 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

cin >> n;
if (n % 21 == 0)
cout << 21 << endl;

else if (n % 7 == 0)
cout << 7 << endl;

else if (n % 3 == 0)
cout << 3 << endl;

else
cout << "-" << endl;

return 0;
}

Задатак: Распоређивање слика

Аутори: Филип Марић, Душан Попадић

На интернет страници слике се слажу једна поред друге у ред. Слике могу бити различите висине
и ширине. Слике се равнају тако да им доње ивице буду у линији, а десна ивица тренутне слике
се поклапа са левом ивицом наредне слике. На сајт треба сложити 4 слике. Потребно је одредити
колика ће бити висина и ширина реда слика уколико су познате димензије сваке појединачно.

Опис улаза

У 4 реда стандардног улаза се уносе по два броја који представљају редомширину и висину слике.
Ови бројеви су природни и највише 100.

Опис излаза

У једном реду стандардног излаза исписати два природна броја: прво ширину, а затим висину
реда који садржи све слике.

Пример 1
Улаз
5 2
2 4
4 3
3 4

Излаз
14 4

Објашњење
Када се слике ређају једна поред друге ширина реда у који се ређа-
ју ће бити 14. Висина реда је таква да у њега може да стане и нај-
виша слика - дакле 4. Погледај слику која иде уз пример. Црвеним
правоугаоником је обележен ред на страници који слике заузимају.

53

Пример 2
Улаз
2 6
17 5
12 6
14 2

Излаз
45 6

Пример 3
Улаз
18 3
15 3
1 3
1 3

Излаз
35 3

Решење

Пошто се слике ређају у ред једна поред друге, укупна ширина реда биће једнака збиру ширина
свих слика. Слике могу имати различите висине, а висина реда је одређена висином највише
слике. Дакле, да би се одредила ширина реда потребно је сабрати ширине свих слика, а да би се
одредила висина потребно је одредити максимум висина свих слика.

#include <iostream>

using namespace std;

int main() {

int ukupnaSirina = 0;
int maksimalnaVisina = -1;

for(int i = 0; i < 4; i++){
int sirina, visina;
cin >> sirina >> visina;

ukupnaSirina += sirina;
if(visina > maksimalnaVisina) maksimalnaVisina = visina;

}

cout << ukupnaSirina << " " << maksimalnaVisina;
return 0;

}

Задатак: Свеска

Аутор: Огњен Тешић

Сара је купила свеску и сваког месеца попуњавала исти број страна (цео број). После 𝑇 месеци,
у свесци је било попуњено укупно 𝑋 страна.

Ако данас у свесци има укупно 𝑍 попуњених страна, одредити колико је месеци прошло од
тренутка када је Сара почела да користи свеску.

Приметите да ће тражени одговор бити цео број.

Опис улаза

У три реда налазе се три цела броја: - у првом реду број 𝑇 , - у другом реду број 𝑋, - у трећем
реду број 𝑍.

54 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

Опис излаза

Исписати један цео број - број месеци који је прошао од почетка коришћења свеске.

Ограничења

• 1 ≤ 𝑇 ≤ 1000
• 1 ≤ 𝑋 ≤ 1000
• 1 ≤ 𝑍 ≤ 1000

Пример 1
Улаз
4
20
45

Излаз
9

Објашњење
Објашњење. После 4 месеца било је попуњено 20 страна, што значи да
је Сара попуњавала 5 страна месечно. Ако је данас попуњено 45 страна,
прошло је 45/5 = 9 месеци.

Пример 2
Улаз
6
30
55

Излаз
11

Решење

Ако је после 𝑇 месеци Сара попунила𝑋 страна свеске то значи да је попуњавала 𝑝𝑜_𝑚𝑒𝑠𝑒𝑐𝑢 =
𝑋/𝑇 страна сваког месеца. Приметимо да је у тексту задатка (у првој реченици) наглашено да
ће овај количник сигурно бити цео број. Ако са 𝑚𝑒𝑠𝑒𝑐𝑖 обележимо колико је прошло месеци
од тренутка када је Сара почела да попуњава свеску до данас, тада је број попуњених страна до
данас једнак 𝑍 = 𝑝𝑜_𝑚𝑒𝑠𝑒𝑐𝑢 ⋅ 𝑚𝑒𝑠𝑒𝑐𝑖, одакле добијамо да је 𝑚𝑒𝑠𝑒𝑐𝑖 = 𝑍/𝑝𝑜_𝑚𝑒𝑠𝑒𝑐𝑢, а то
је вредност која нам се тражила у задатку.

#include <iostream>

using namespace std;

int main() {
int T, X, Z;
cin >> T >> X >> Z;

int po_mesecu = X / T;
int meseci = Z / po_mesecu;

cout << meseci;

return 0;
}

Задатак: Верзије софтвера

Аутор: Филип Марић

Свака верзија софтвера се означава са 3 броја. На пример 2.13.5 је пета подподверзјиа тринаесте

55

подверзије друге верзије софтвера. Написати програм који проверава да ли тренутно инстали-
рана верзија софтвера на рачунару задовољава потребе корисника.

Опис улаза

Са стандардног улаза се уноси верзија софтвера коју потребно имати на рачунару и верзија соф-
твера која је тренутно присутна (по три природна броја раздвојена размацима, свака у посебном
реду, прво потребна, па инсталирана).

Опис излаза

На стандардни излаз исписати da ако је тренутна верзија софтвера једнака потребној или је
новија од тога тј. ne у супротном.

Пример 1
Улаз
2 5 3
2 6 1

Излаз
da

Објашњење
Тренутна инсталирана верзија је 2.6.1 што је новија верзија у односу на
потребну 2.5.3.

Пример 2
Улаз
2 5 3
2 4 14

Излаз
ne

Решење

Пошто не знамо колико цифара имају ознаке није једноставно три броја претворити у један. Зато
ћемо верзије поредити лексикографски. Прво се пореди први број, па ако је он једнак пореди се
други број, па ако је и он једнак, пореди се трећи број.

Можемо написати један логички израз којим се проверава да ли је инсталирана верзија у реду.

#include <iostream>

using namespace std;

int main() {
int potrebnoA, potrebnoB, potrebnoC;
cin >> potrebnoA >> potrebnoB >> potrebnoC;
int instaliranoA, instaliranoB, instaliranoC;
cin >> instaliranoA >> instaliranoB >> instaliranoC;
if (instaliranoA > potrebnoA ||

(instaliranoA == potrebnoA && instaliranoB > potrebnoB) ||
(instaliranoA == potrebnoA && instaliranoB == potrebnoB && instaliranoC >= potrebnoC))

cout << "da" << endl;
else
cout << "ne" << endl;

return 0;
}

Уместо јединственог логичког израза можемо надовезати испитивање више једноставних услова.

#include <iostream>

using namespace std;

56 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

int main() {
int potrebnoA, potrebnoB, potrebnoC;
cin >> potrebnoA >> potrebnoB >> potrebnoC;
int instaliranoA, instaliranoB, instaliranoC;
cin >> instaliranoA >> instaliranoB >> instaliranoC;
bool OK;
if (instaliranoA > potrebnoA)
OK = true;

else if (instaliranoA < potrebnoA)
OK = false;

else if (instaliranoB > potrebnoB)
OK = true;

else if (instaliranoB < potrebnoB)
OK = false;

else if (instaliranoC >= potrebnoC)
OK = true;

else
OK = false;

if (OK)
cout << "da" << endl;

else
cout << "ne" << endl;

return 0;
}

Задатак: Жућков рејон

Аутори: Милан Вугделија, Огњен Тешић

Жућко воли да трчкара дуж улице лево и десно од свог дворишта, њушкајући земљу између
трчкарања.

Написати програм који за дато Жућково кретање одређује колико се он најдаље кретао лево и
десно од дворишта.

Опис улаза

У првом реду стандардног улаза је број Жућкових трчкарања, цео позитиван број не већи од 100.
У другом реду је 𝑛 целих бројева 𝑎𝑖 различитих од 0, од којих сваки преставља дужину једног
Жућковог трчкарања. Вредност 𝑎𝑖 > 0 означава да је Жућко претрчао 𝑎𝑖 метара надесно, док
вредност 𝑎𝑖 < 0 означава да је Жућко претрчао |𝑎𝑖| метара налево. Бројеви 𝑎𝑖 су по апсолутној
вредности највише 200.

Опис излаза

У први ред стандардног излаза исписати колико највише метара је жућко ишао лево од капије
свог дворишта, а у други ред колико је највише ишао десно.

57

Пример
Улаз
5
3 -5 2 6 -4

Излаз
2
6

Објашњење
Откако је изашао из свог дворишта, Жућко је ишао 3 метра наде-
сно, затим 5 метара налево (то је до места које је 2 метра лево од
капије), затим 2 метра надесно (до своје капије), па 6 метара на-
десно (и толико десно од капије) и на крају 4 метра налево. Према
томе,Жућко је ишао највише 2 метра лево и 6 метара десно од своје
капије.

Решење

Решење одређује интервал кретања Жућка праћењем његове позиције након сваког трчкарања.
Програм иницијално поставља позицију на 0 и затим пролази кроз сваки померај, ажурирајући
тренутну позицију. Истовремено бележи најудаљеније тачке лево и десно од полазне позиције.
На крају израчунава и приказује апсолутну вредност најудаљеније леве тачке и вредност најуда-
љеније десне тачке.

#include <iostream>

using namespace std;

int main() {
int n, pomak, polozaj = 0, krajnjiLevi = 0, krajnjiDesni = 0;
cin >> n;
for (int i = 0; i < n; i++) {

cin >> pomak;
polozaj += pomak;
krajnjiLevi = min(krajnjiLevi, polozaj);
krajnjiDesni = max(krajnjiDesni, polozaj);

}
cout << -krajnjiLevi << endl;
cout << krajnjiDesni << endl;

return 0;
}

Задатак: Јелка

Аутори: Филип Марић, Михајло Марковић Како је Нова година била пре тачно месец дана, Мали
Перица је решио да раскити јелку и спакује украсе како би их сачувао за следећу годину. Ме-
ђутим, пре него што почне, жели да преброји колико украса има, како би одабрао одговарајућу
кутију у коју ће их упаковати.

Пошто је јелка веома велика, Мали Перица је одлучио да је обради рачунарски.
Слика јелке је представљена помоћу 𝑁 ниски, при чему: - . означава део слике на коме нема
јелке - * означава део јелке који није украшен - o означава украс на јелци

Помозите Малом Перици тако што ћете му на основу датих ниски рећи колико украса се налази
на јелци.

58 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

Опис улаза

У првом реду уноси се природан број 𝑁 (1 ≤ 𝑁 ≤ 100), број ниски које представљају јелку.
У наредних𝑁 редова уносе се ниске, свака дужине 2𝑁 −1. Гарантује се да се свака ниска састоји
искључиво од карактера ., * и o, као и да дате ниске заиста формирају слику јелке, тј. да у 𝑖-том
реду постоји тачно 2𝑖 − 1 карактера који нису . и сви они су узастопни и налазе се у средини
𝑖-те ниске (видети пример).
Опис излаза

У једном реду стандардног излаза исписати један број који представља број украса на јелци.

Пример
Улаз
4
...*...
..*o*..
.*o***.
o*oo***

Излаз
5

Решење

Потребно је у једној променљивој чувати укупан број пронађених украса. За сваку учитану ни-
ску пролазимо кроз сваки њен карактер и проверавамо да ли је једнак ‘o’. Ако јесте, увећавамо
резултат за један.

#include <iostream>

using namespace std;

int main(){
int n;
cin>>n;
string s;
int rezultat=0;
for(int i=0;i<n;i++){

cin>>s;
for(int j=0;j<s.size();j++){

if(s[j]=='o'){
rezultat++;

}
}

}
cout << rezultat << endl;

}

Задатак: Питагорина тројка

Аутори: Ђура Пађан, Огњен Тешић

59

Три броја чине Питагорину тројку ако важи да је квадрат једног броја једнак збиру квадрата
преостала два броја. Испитати да ли дата три броја чине Питагорину тројку.

Опис улаза

У једином реду улаза су дата три природна броја мања од 1000, раздвојена размаком.

Опис излаза

На излаз исписати da ако дата три броја чине Питагорину тројку, односно ne уколико је не чине.

Пример 1
Улаз
3 5 4

Излаз
da

Објашњење
Објашњење примера. Важи 52 = 32+42, па ова три броја чине Питагорину
тројку.

Пример 2
Улаз
5 4 6

Излаз
ne

Пример 3
Улаз
13 12 5

Излаз
da

Објашњење
Објашњење примера. Важи 132 = 52 + 122, па ова три броја чине Пита-
горину тројку.

Решење

Решење проверава сва три могућа случаја за Питагорину тројку: да ли је квадрат једног броја
једнак збиру квадрата преостала два броја. Проверавамо услове за сваку комбинацију бројева 𝑎,
𝑏 и 𝑐. Ако један од услова важи, исписујемо „да”, иначе „не”.

#include <iostream>

using namespace std;

int main() {
int a, b, c;
cin >> a >> b >> c;

if (a * a == b * b + c * c) {
cout << "da" << endl;

} else if (b * b == a * a + c * c) {
cout << "da" << endl;

} else if (c * c == a * a + b * b) {
cout << "da" << endl;

} else {
cout << "ne" << endl;

}

return 0;
}

60 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

Задатак: Учешће

Аутор: Душан Попадић

На семинару „Млади рођени 90-их” право учешћа имају сви, али приоритет имају они који су
рођени 90-их (од 1990. до 1999. године). Уколико су по овом критеријуму две особе једнаке,
приоритет има млађа. За последње слободно место су се пријавили Роберт и Лазар. Одредите
који ће од њих двојице бити примљен на семинар.

Опис улаза

У првом реду се налази Робертова година рођења. У другом реду се налази Лазарева година
рођења.

Опис излаза

Уколико Роберт улази на семинар исписати 𝑅, уколко улази Лазар исписати 𝐿, а уколико је
немогуће одлучити на основу године рођења исписати 𝑁 .

Пример 1
Улаз
1991
2000

Излаз
R

Објашњење
Пошто је Роберт рођен током 90-их он има предност у односу на Лазара.

Пример 2
Улаз
1994
1997

Излаз
L

Објашњење
Пошто су и Роберт и Лазар рођени током 90-их, предност има Лазар јер је
млађи.

Пример 3
Улаз
1995
1995

Излаз
N

Објашњење
Пошто су обојица рођени исте године, није могуће одредити ко има пред-
ност само на основу податка о години рођења.

Решење

У овом задатку је потребно проверити неколико случајева:

• Ако су године рођења исте, онда је немогуће одредити ко има предност и потребно је
исписати N.

• Ако су обе године исте по питању припадности деведесетим (или обе припадају или ни-
једна не припада) онда треба проверити ко је млађи и исписати његово слово. Обратите
пажњу да је млађи онај који има већу годину рођења (неко рођен 1997. је млађи од неког
рођеног 1991. године).

• Ако претходни услови нису испуњени то значи да једна година припада деведесетим, а
друга не и треба исписати слово оног који јесте рођен деведесетих.

Пошто је на неколико места у коду потребно проверити да ли су Роберт и Лазар рођени деведе-
сетих, направили смо помоћну функцију која то за нас проверава како би код био прегледнији.

#include <iostream>

using namespace std;

61

// odredjuje da li godina pripada devedesetim godinama
bool dev(int g){

return 1990 <= g && g <= 1999;
}

int main() {
int r, l;
cin >> r >> l;

if(r == l) // ako su godine jednake, nemoguce je odrediti ko ima prednost
cout << "N";

else
{

if(dev(r) == dev(l)) // ako su isti po kriterijumu pripadanja devedesetim onda se bira mladji
{

if(r > l)
cout << "R";

else
cout << "L";

}
else // u ovu granu se ulazi ako jedan pripada devedesetim, a drugi ne
{

if(dev(r)) cout << "R";
else cout << "L";

}
}

return 0;
}

Задатак: Баундинг бокс

Аутори: Филип Марић, Душан Попадић

На екрану једне апликације нацртан је скуп тачака и потребно је одредити најмањи правоугаоник
(чије су странице паралелне координатним осама) који сaдржи све тачке првог квадранта. Првом
квадранту припадају тачке чије су обе координате веће од нуле. Напиши програм који на основу
познатих координата тих тачака одређује координате темена тог правоугаоника.

Опис улаза

Са стандардног улаза се учитава број тачака 𝑛 (2 ≤ 𝑛 ≤ 105), а затим из наредних 𝑛 редова
координате тих тачака (целобројне 𝑥 и 𝑦 координате, вредности између −105 и 105, раздвојене
размаком). Сматрати да ће увек потојати барем две тачке у првом квадранту.

Опис излаза

На стандардни излаз исписати координате 4 темена правоугаоника и то доње-лево, доње-десно,
горње-лево и горње-десно.

62 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

Пример
Улаз
3
10 30
7 20
-14 25

Излаз
7 20
10 20
7 30
10 30

Решење

Да бисмо одредили најмањи правоугаоник који садржи све тачке потребно је да одредимо њего-
ве леву, десну, горњу и доњу границу. Да би све тачке биле у правоугаонику мора да важи да су
“најлевља”, “најдеснија”, “најгорња” и “најдоња” тачка у правоукаонику. Ако са 𝐿𝑥 обележимо
𝑋 координату најлевље тачке, тада граница лева правоугаоника мора да има 𝑋 координату која
је мања или једнака 𝐿𝑥, а пошто нам је потребан најмањи могући правоугаоник, онда ће лева
граница прваоугаоника баш бити једнака 𝐿𝑥. Сличну логику примењујемо и за остале три стра-
нице правоугаоника. Дакле, потребно је одредити најмање и највеће 𝑋 и 𝑌 координате које се
појављују међу тачкама. Пошто се тражи да се одреди правоугаоник који обухвата тачке само
у првом квадранту, приликом учитавања податак ћемо игнорисати све тачке које не припадају
првом квадранту.

#include <iostream>
#include <algorithm>
#include <vector>
#include <limits>

using namespace std;

int main() {
int n;
cin >> n;

int minx = numeric_limits<int>::max();
int maxx = 0;
int miny = numeric_limits<int>::max();
int maxy = 0;

for (int i = 0; i < n; i++){
int x, y;

cin >> x >> y;
if(x <= 0 || y <= 0) continue; // preskacemo tacke koje ne pripadaju prvom kvadrantu
minx = min(minx, x);
maxx = max(maxx, x);
miny = min(miny, y);
maxy = max(maxy, y);

}

cout << minx << " " << miny << endl; // donje-levo teme pravougaonika
cout << maxx << " " << miny << endl; // donje-desno teme pravougaonika
cout << minx << " " << maxy << endl; // gornje-levo teme pravougaonika

63

cout << maxx << " " << maxy << endl; // gornje- desno teme pravougaonika
return 0;

}

Задатак: Различите мајице

Аутори: Милан Вугделија, Огњен Тешић

Три сестре желе да носе мајице различите боје. Написати програм који учитава која од њих има
које мајице, а исписује број начина да њих три обуку мајице различитих боја.

Опис улаза

Маијце за сваку сестру описане су подацима у два реда стандардног улаза (прва два реда за прву
сестру, следећа два за другу, а последња два за трећу). У првом од два реда који садрже податке
о мајицама једне сестре налази се број мајица те сестре, а у другом реду боје мајица.

Број мајица по сестри није већи од 10.

Опис излаза

На стандардни излаз исписати један цео број, тражени број начина да сестре обуку мајице ра-
зличитих боја.

Пример
Улаз
3
crvena plava zuta
2
zelena crvena
3
crna zuta crvena

Излаз
10

Објашњење
Могући су следећи избори мајица:
crvena zelena crna
crvena zelena zuta
plava zelena crna
plava zelena zuta
plava zelena crvena
plava crvena crna
plava crvena zuta
zuta zelena crna
zuta zelena crvena
zuta crvena crna

Решење

Да бисмо пребројали све могуће расподеле мајица потребно је проћи са три угнежђене петље
кроз сва три низа. Да бисмо осигурали да ће све три сестре носити различите мајице, при ода-
биру мајица из другог и трећег низа додајемо услов да се та боја није већ појавила код једне
од претходних сестара (ако их има). Када одредимо једну могућу комбинацију боја, увећавамо
бројач за 1.

#include <iostream>
#include <vector>

using namespace std;

int main() {
int n1, n2, n3;

64 ГЛАВА 3. ОПШТИНСКО ТАКМИЧЕЊЕ

cin >> n1;
vector<string> boje1(n1);
for (int i = 0; i < n1; i++) cin >> boje1[i];

cin >> n2;
vector<string> boje2(n2);
for (int i = 0; i < n2; i++) cin >> boje2[i];

cin >> n3;
vector<string> boje3(n3);
for (int i = 0; i < n3; i++) cin >> boje3[i];

int brNacina = 0;
for (int i1 = 0; i1 < n1; i1++)
{

for (int i2 = 0; i2 < n2; i2++)
{

if (boje1[i1] == boje2[i2])
continue;

for (int i3 = 0; i3 < n3; i3++)
if (boje1[i1] != boje3[i3] && boje2[i2] != boje3[i3])

brNacina++;
}

}

cout << brNacina << endl;
return 0;

}

	1. круг квалификација
	Задатак: Године
	Задатак: Чоколада
	Задатак: Јмбг
	Задатак: Комбинација задатака
	Задатак: Број сегмената парног збира
	Задатак: Контролна цифра
	Задатак: Најубедљивија победа
	Задатак: Јединичне колоне
	Задатак: Постојање троугла
	Задатак: Аутопревозник
	Задатак: Термометар
	Задатак: Једначина
	Задатак: Највећа комбинација

	2. круг квалификација
	Задатак: Гринготс
	Задатак: Путовање
	Задатак: Приближан рачун
	Задатак: Добри парови
	Задатак: Цензура
	Задатак: Ширење тајне
	Задатак: Хари Потер
	Задатак: Квазинаучник
	Задатак: Да ли постоји правоугаоник
	Задатак: Сума свих поднизова
	Задатак: Слагалица
	Задатак: Гумене бомбоне
	Задатак: Адвокатица
	Задатак: Слатки поднизови

	Општинско такмичење
	Задатак: Буџет за летовање
	Задатак: Упоредити цифре
	Задатак: Дељивост са 3 7 21
	Задатак: Распоређивање слика
	Задатак: Свеска
	Задатак: Верзије софтвера
	Задатак: Жућков рејон
	Задатак: Јелка
	Задатак: Питагорина тројка
	Задатак: Учешће
	Задатак: Баундинг бокс
	Задатак: Различите мајице

